-
Notifications
You must be signed in to change notification settings - Fork 184
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
5ttgen deep_atropos: Reformat help documentation
- Loading branch information
Showing
1 changed file
with
36 additions
and
27 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -22,33 +22,42 @@ def usage(base_parser, subparsers): #pylint: disable=unused-variable | |
parser.set_author('Lucius S. Fekonja (lucius.fekonja[at]charite.de) and Robert E. Smith ([email protected])') | ||
parser.set_synopsis('Generate the 5TT image based on a Deep Atropos segmentation or probabilities image') | ||
parser.add_citation('Use of the ANTsX ecosystem should be accompanied by the following citation:\n' | ||
'N.J. Tustison, P.A. Cook, A.J. Holbrook, H.J. Johnson, J. Muschelli, G.A. Devenyi, J.T. Duda, S.R. Das, ' | ||
'N.C. Cullen, D.L. Gillen, M.A. Yassa, J.R. Stone, J.C. Gee, and B.B. Avants. ' | ||
'The ANTsX ecosystem for quantitative biological and medical imaging. ' | ||
'Scientific Reports, 11(1):9068 (2021), pp. 1-13.', | ||
is_external=True) | ||
parser.add_description('This algorithm accepts either:') | ||
parser.add_description('1. A 3D segmentation image from Deep Atropos with labels:') | ||
parser.add_description('0: Background, 1: CSF, 2: Gray Matter, 3: White Matter, 4: Deep Gray Matter, 5: Brain Stem, 6: Cerebellum') | ||
parser.add_description('2. A 4D probability image (dimensions [x,y,z,7]) containing probability maps for each tissue class in the same order as above') | ||
parser.add_description('To generate these input images using antspynet\'s deep_atropos function:') | ||
parser.add_description('1. Install required packages: pip install antspynet nibabel') | ||
parser.add_description('2. Use Python commands:') | ||
parser.add_description('>>> # Load the T1-weighted image') | ||
parser.add_description('>>> import ants, antspynet') | ||
parser.add_description('>>> import nibabel as nib') | ||
parser.add_description('>>> import numpy as np') | ||
parser.add_description('>>> t1_image = ants.image_read(\'input_t1.nii.gz\')') | ||
parser.add_description('>>> # Run Deep Atropos segmentation') | ||
parser.add_description('>>> segments = antspynet.deep_atropos(t1_image)') | ||
parser.add_description('>>> # Save the segmentation') | ||
parser.add_description('>>> ants.image_write(segments[\'segmentation_image\'], \'segmentation.nii.gz\')') | ||
parser.add_description('>>> # Stack and save probability maps') | ||
parser.add_description('>>> prob_maps = np.stack([np.array(img.numpy()) for img in segments[\'probability_images\']], axis=-1)') | ||
parser.add_description('>>> nib.save(nib.Nifti1Image(prob_maps, t1_image.affine), \'probabilities.nii.gz\')') | ||
parser.add_description('The generated files can then be used with MRtrix3:') | ||
parser.add_description('5ttgen deep_atropos segmentation.nii.gz 5tt.mif') | ||
parser.add_description('5ttgen deep_atropos probabilities.nii.gz 5tt.mif') | ||
'N.J. Tustison, P.A. Cook, A.J. Holbrook, H.J. Johnson, J. Muschelli, G.A. Devenyi, J.T. Duda, S.R. Das, ' | ||
'N.C. Cullen, D.L. Gillen, M.A. Yassa, J.R. Stone, J.C. Gee, and B.B. Avants. ' | ||
'The ANTsX ecosystem for quantitative biological and medical imaging. ' | ||
'Scientific Reports, 11(1):9068 (2021), pp. 1-13.', | ||
is_external=True) | ||
parser.add_description('This algorithm can accept the outputs of Deep Atropos in one of two forms. ' | ||
'The "segmentation image" is a 3D image, of integer datatype, ' | ||
'with indices mapping to discrete tissue classes as follows: ' | ||
'0: Background; 1: CSF; 2: Gray Matter; 3: White Matter; 4: Deep Gray Matter; 5: Brain Stem; 6: Cerebellum. ' | ||
'The "probabilities images" are a set of seven 3D volumes, ' | ||
'each corresponding to the posterior probability of one of the seven tissue classes above. ' | ||
'These can be provided as input to this command by concatenating into a 4D image series with 7 volumes ' | ||
'(the order of which must match that above).') | ||
parser.add_description('The example usages provided in this help page, ' | ||
'which include execution of Deep Atropos itself within a Python environment, ' | ||
'require that "ants" and "antspynet" be installed via Python\'s "pip"; ' | ||
'use of the "probability images" also requires that nibabel and numpy be installed.') | ||
parser.add_example_usage('To utilise the "segmentation" image', | ||
'python3 -c \'import ants, antspynet; ' | ||
't1w = ants.image_read(\'T1w.nii.gz\'); ' | ||
'result = antspynet.deep_atropos(t1w); ' | ||
'ants.image_write\'result[\'segmentation_image\'], \'segmentation.nii.gz\')\'; ' | ||
'5ttgen deep_atropos segmentation.nii.gz 5tt_segmentation.mif', | ||
'Because the input segmentation here is an integer image, ' | ||
'where each voxel just contains an index corresponding to the maximal tissue class, ' | ||
'the output 5TT image will not possess any fractional partial volumes; ' | ||
'it will just contain the value 1.0 in whichever 5TT volume corresponds to the singular assigned tissue class.') | ||
parser.add_example_usage('To utilise the "probability images"', | ||
'python3 -c \'import ants, antspynet, nibabel, numpy; ' | ||
't1w = ants.image_read(\'T1w.nii.gz\'); ' | ||
'result = antspynet.deep_atropos(t1w); ' | ||
'prob_maps = numpy.stack([numpy.array(img.numpy()) for img in result[\'probability_images\']], axis=-1); ' | ||
'nibabel.save(nib.Nifti1Image(prob_maps, t1w.affine), \'probabilities.nii.gz\')\'; ' | ||
'5ttgen deep_atropos probabilities.nii.gz 5tt_probabilities.mif', | ||
'In this use case, the poerior probabilities of these tissue classes are interpreted as partial volume fractions ' | ||
'and imported into the derivative 5TT image appropriately.') | ||
parser.add_argument('input', | ||
type=app.Parser.ImageIn(), | ||
help='The input Deep Atropos segmentation image') | ||
|