-
Notifications
You must be signed in to change notification settings - Fork 2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
79 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
from __future__ import print_function | ||
|
||
import os | ||
import numpy as np | ||
from PIL import Image | ||
from typing import Union | ||
|
||
from modules import devices | ||
from annotator.util import load_model | ||
from annotator.annotator_path import models_path | ||
|
||
from controlnet_aux import SamDetector | ||
from controlnet_aux.segment_anything import sam_model_registry, SamAutomaticMaskGenerator | ||
|
||
class SamDetector_Aux(SamDetector): | ||
|
||
model_dir = os.path.join(models_path, "mobile_sam") | ||
|
||
def __init__(self, mask_generator: SamAutomaticMaskGenerator): | ||
super().__init__(mask_generator) | ||
|
||
self.device = devices.device | ||
self.model = SamDetector_Aux().to(self.device).eval() | ||
self.from_pretrained(model_type="vit_t") | ||
|
||
@classmethod | ||
def from_pretrained(cls, model_type="vit_t"): | ||
""" | ||
Possible model_type : vit_h, vit_l, vit_b, vit_t | ||
download weights from https://huggingface.co/dhkim2810/MobileSAM | ||
""" | ||
remote_url = os.environ.get( | ||
"CONTROLNET_MOBILE_SAM_MODEL_URL", | ||
"https://huggingface.co/dhkim2810/MobileSAM/resolve/main/mobile_sam.pt", | ||
) | ||
model_path = load_model( | ||
"mobile_sam.pt", remote_url=remote_url, model_dir=cls.model_dir | ||
) | ||
|
||
sam = sam_model_registry[model_type](checkpoint=model_path) | ||
|
||
mask_generator = SamAutomaticMaskGenerator(sam) | ||
|
||
return cls(mask_generator) | ||
|
||
def __call__(self, input_image: Union[np.ndarray, Image.Image]=None, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs) -> np.ndarray: | ||
self.model.to(self.device) | ||
super().__call__(image=input_image, detect_resolution=detect_resolution, image_resolution=image_resolution, output_type=output_type, **kwargs) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -9,3 +9,4 @@ matplotlib | |
facexlib | ||
timm<=0.9.5 | ||
pydantic<=1.10.17 | ||
controlnet_aux |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
import numpy as np | ||
from skimage import morphology | ||
|
||
from annotator.mobile_sam import SamDetector_Aux | ||
from scripts.supported_preprocessor import Preprocessor, PreprocessorParameter | ||
from scripts.utils import resize_image_with_pad | ||
|
||
class PreprocessorMobileSam(Preprocessor): | ||
def __init__(self): | ||
super().__init__(name="mobile_sam") | ||
self.tags = ["Segmentation"] | ||
self.model = None | ||
|
||
def __call__( | ||
self, | ||
input_image, | ||
resolution, | ||
slider_1=None, | ||
slider_2=None, | ||
slider_3=None, | ||
**kwargs | ||
): | ||
img, remove_pad = resize_image_with_pad(input_image, resolution) | ||
if self.model is None: | ||
self.model = SamDetector_Aux() | ||
|
||
result = self.model(img, detect_resolution=resolution, image_resolution=resolution) | ||
return remove_pad(result) | ||
|
||
Preprocessor.add_supported_preprocessor(PreprocessorMobileSam()) |