Skip to content

LightLLM is a Python-based LLM (Large Language Model) inference and serving framework, notable for its lightweight design, easy scalability, and high-speed performance.

License

Notifications You must be signed in to change notification settings

ModelTC/lightllm

Repository files navigation

LightLLM

docs Docker stars visitors Discord Banner license

LightLLM is a Python-based LLM (Large Language Model) inference and serving framework, notable for its lightweight design, easy scalability, and high-speed performance. LightLLM harnesses the strengths of numerous well-regarded open-source implementations, including but not limited to FasterTransformer, TGI, vLLM, and FlashAttention.

English Docs | 中文文档

Features

  • Tri-process asynchronous collaboration: tokenization, model inference, and detokenization are performed asynchronously, leading to a considerable improvement in GPU utilization.
  • Nopad (Unpad): offers support for nopad attention operations across multiple models to efficiently handle requests with large length disparities.
  • Dynamic Batch: enables dynamic batch scheduling of requests
  • FlashAttention: incorporates FlashAttention to improve speed and reduce GPU memory footprint during inference.
  • Tensor Parallelism: utilizes tensor parallelism over multiple GPUs for faster inference.
  • Token Attention: implements token-wise's KV cache memory management mechanism, allowing for zero memory waste during inference.
  • High-performance Router: collaborates with Token Attention to meticulously manage the GPU memory of each token, thereby optimizing system throughput.
  • Int8KV Cache: This feature will increase the capacity of tokens to almost twice as much. only llama support.

Supported Model List

When you start Qwen-7b, you need to set the parameter '--eos_id 151643 --trust_remote_code'.

ChatGLM2 needs to set the parameter '--trust_remote_code'.

Baichuan and Baichuan2 needs to set the parameter '--trust_remote_code'.

InternLM needs to set the parameter '--trust_remote_code'.

InternVL-Chat(Phi3) needs to set the parameter '--eos_id 32007 --trust_remote_code'.

InternVL-Chat(InternLM2) needs to set the parameter '--eos_id 92542 --trust_remote_code'.

Qwen2-VL-7b needs to set the parameter '--eos_id 151645 --trust_remote_code', and use 'pip install git+https://github.com/huggingface/transformers' to upgrade to the latest version.

Stablelm needs to set the parameter '--trust_remote_code'.

Phi-3 only supports Mini and Small.

DeepSeek-V2-Lite and DeepSeek-V2 need to set the parameter '--data_type bfloat16'

Get started

Requirements

The code has been tested with Pytorch>=1.3, CUDA 11.8, and Python 3.9. To install the necessary dependencies, please refer to the provided requirements.txt and follow the instructions as

# for cuda 11.8
pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu118
# this version nccl can support torch cuda graph 
pip install nvidia-nccl-cu12==2.20.5

Container

You can use the official Docker container to run the model more easily. To do this, follow these steps:

  • Pull the container from the GitHub Container Registry:

    docker pull ghcr.io/modeltc/lightllm:main
  • Run the container with GPU support and port mapping:

    docker run -it --gpus all -p 8080:8080                  \
            --shm-size 1g -v your_local_path:/data/         \
            ghcr.io/modeltc/lightllm:main /bin/bash
  • Alternatively, you can build the container yourself:

    docker build -t <image_name> .
    docker run -it --gpus all -p 8080:8080                  \
            --shm-size 1g -v your_local_path:/data/         \
            <image_name> /bin/bash
  • You can also use a helper script to launch both the container and the server:

    python tools/quick_launch_docker.py --help
  • Note: If you use multiple GPUs, you may need to increase the shared memory size by adding --shm-size to the docker run command.

Installation

  • Install from the source code by
python setup.py install
  • Install Triton Package

The code has been tested on a range of GPUs including V100, A100, A800, 4090, and H800. If you are running the code on A100, A800, etc., we recommend using triton==3.0.0.

pip install triton==3.0.0 --no-deps

If you are running the code on H800 or V100., you can try triton-nightly to get better performance.

pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly --no-deps

RUN LLaMA

With efficient Routers and TokenAttention, LightLLM can be deployed as a service and achieve the state-of-the-art throughput performance.

Launch the server:

python -m lightllm.server.api_server --model_dir /path/llama-7B     \
                                     --host 0.0.0.0                 \
                                     --port 8080                    \
                                     --tp 1                         \
                                     --max_total_token_num 120000

The parameter max_total_token_num is influenced by the GPU memory of the deployment environment. You can also specify --mem_faction to have it calculated automatically.

python -m lightllm.server.api_server --model_dir /path/llama-7B     \
                                     --host 0.0.0.0                 \
                                     --port 8080                    \
                                     --tp 1                         \
                                     --mem_faction 0.9

To initiate a query in the shell:

curl http://127.0.0.1:8080/generate     \
    -X POST                             \
    -d '{"inputs":"What is AI?","parameters":{"max_new_tokens":17, "frequency_penalty":1}}' \
    -H 'Content-Type: application/json'

To query from Python:

import time
import requests
import json

url = 'http://localhost:8080/generate'
headers = {'Content-Type': 'application/json'}
data = {
    'inputs': 'What is AI?',
    "parameters": {
        'do_sample': False,
        'ignore_eos': False,
        'max_new_tokens': 1024,
    }
}
response = requests.post(url, headers=headers, data=json.dumps(data))
if response.status_code == 200:
    print(response.json())
else:
    print('Error:', response.status_code, response.text)

RUN Multimodal Models

Run QWen-VL
python -m lightllm.server.api_server \
    --host 0.0.0.0                 \
    --port 8080                    \
    --tp 1                         \
    --max_total_token_num 12000    \
    --trust_remote_code            \
    --enable_multimodal            \
    --cache_capacity 1000          \
    --model_dir /path/of/Qwen-VL or /path/of/Qwen-VL-Chat
Run Llava
python -m lightllm.server.api_server \
    --host 0.0.0.0                 \
    --port 8080                    \
    --tp 1                         \
    --max_total_token_num 12000    \
    --trust_remote_code            \
    --enable_multimodal            \
    --cache_capacity 1000          \
    --model_dir /path/of/llava-v1.5-7b or /path/of/llava-v1.5-13b
Query From QWen-VL
import time
import requests
import json
import base64

url = 'http://localhost:8080/generate'
headers = {'Content-Type': 'application/json'}

uri = "/local/path/of/image" # or "/http/path/of/image"
if uri.startswith("http"):
    images = [{"type": "url", "data": uri}]
else:
    with open(uri, 'rb') as fin:
        b64 = base64.b64encode(fin.read()).decode("utf-8")
    images=[{'type': "base64", "data": b64}]

data = {
    "inputs": "<img></img>Generate the caption in English with grounding:",
    "parameters": {
        "max_new_tokens": 200,
        # The space before <|endoftext|> is important, the server will remove the first bos_token_id, but QWen tokenizer does not has bos_token_id
        "stop_sequences": [" <|endoftext|>"],
    },
    "multimodal_params": {
        "images": images,
    }
}

response = requests.post(url, headers=headers, data=json.dumps(data))
if response.status_code == 200:
    print(response.json())
else:
    print('Error:', response.status_code, response.text)
Query From QWen-VL-Chat
import json
import requests
import base64

def run_once(query, uris):
    images = []
    for uri in uris:
        if uri.startswith("http"):
            images.append({"type": "url", "data": uri})
        else:
            with open(uri, 'rb') as fin:
                b64 = base64.b64encode(fin.read()).decode("utf-8")
            images.append({'type': "base64", "data": b64})

    data = {
        "inputs": query,
        "parameters": {
            "max_new_tokens": 200,
            # The space before <|endoftext|> is important, the server will remove the first bos_token_id, but QWen tokenizer does not has bos_token_id
            "stop_sequences": [" <|endoftext|>", " <|im_start|>", " <|im_end|>"],
        },
        "multimodal_params": {
            "images": images,
        }
    }

    # url = "http://127.0.0.1:8080/generate_stream"
    url = "http://127.0.0.1:8080/generate"
    headers = {'Content-Type': 'application/json'}
    response = requests.post(url, headers=headers, data=json.dumps(data))
    if response.status_code == 200:
        print(" + result: ({})".format(response.json()))
    else:
        print(' + error: {}, {}'.format(response.status_code, response.text))

"""
multi-img, multi-round:

<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
<img></img>
<img></img>
上面两张图片分别是哪两个城市?请对它们进行对比。<|im_end|>
<|im_start|>assistant
根据提供的信息,两张图片分别是重庆和北京。<|im_end|>
<|im_start|>user
这两座城市分别在什么地方?<|im_end|>
<|im_start|>assistant
"""
run_once(
    uris = [
        "assets/mm_tutorial/Chongqing.jpeg",
        "assets/mm_tutorial/Beijing.jpeg",
    ],
    query = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<img></img>\n<img></img>\n上面两张图片分别是哪两个城市?请对它们进行对比。<|im_end|>\n<|im_start|>assistant\n根据提供的信息,两张图片分别是重庆和北京。<|im_end|>\n<|im_start|>user\n这两座城市分别在什么地方?<|im_end|>\n<|im_start|>assistant\n"
)
Query From Llava
import time
import requests
import json
import base64

url = 'http://localhost:8080/generate'
headers = {'Content-Type': 'application/json'}

uri = "/local/path/of/image" # or "/http/path/of/image"
if uri.startswith("http"):
    images = [{"type": "url", "data": uri}]
else:
    with open(uri, 'rb') as fin:
        b64 = base64.b64encode(fin.read()).decode("utf-8")
    images=[{'type': "base64", "data": b64}]

data = {
    "inputs": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nPlease explain the picture. ASSISTANT:",
    "parameters": {
        "max_new_tokens": 200,
    },
    "multimodal_params": {
        "images": images,
    }
}

response = requests.post(url, headers=headers, data=json.dumps(data))
if response.status_code == 200:
    print(response.json())
else:
    print('Error:', response.status_code, response.text)

Additional lanuch parameters: --enable_multimodal, --cache_capacity, larger --cache_capacity requires larger shm-size

Support --tp > 1, when tp > 1, visual model run on the gpu 0

The special image tag for Qwen-VL is <img></img> (<image> for Llava), the length of data["multimodal_params"]["images"] should be the same as the count of tags, The number can be 0, 1, 2, ...

Input images format: list for dict like {'type': 'url'/'base64', 'data': xxx}

Performance

Service Performance

We compared the service performance of LightLLM and vLLM==0.1.2 on LLaMA-7B using an A800 with 80G GPU memory.

To begin, prepare the data as follows:

wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

Launch the service:

python -m lightllm.server.api_server --model_dir /path/llama-7b --tp 1 --max_total_token_num 121060 --tokenizer_mode auto

Evaluation:

cd test
python benchmark_serving.py --tokenizer /path/llama-7b --dataset /path/ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 2000 --request-rate 200

The performance comparison results are presented below:

vLLM LightLLM
Total time: 361.79 s
Throughput: 5.53 requests/s
Total time: 188.85 s
Throughput: 10.59 requests/s

Static inference performance

For debugging, we offer static performance testing scripts for various models. For instance, you can evaluate the inference performance of the LLaMA model by

cd test/model
python test_llama.py

FAQ

  • The LLaMA tokenizer fails to load.
    • consider resolving this by running the command pip install protobuf==3.20.0.
  • error : PTX .version 7.4 does not support .target sm_89
    • launch with bash tools/resolve_ptx_version python -m lightllm.server.api_server ...

Projects using lightllm

If you have a project that should be incorporated, please contact via email or create a pull request.

  1. LazyLLM: Easyest and lazyest way for building multi-agent LLMs applications.

    Once you have installed lightllm and lazyllm, and then you can use the following code to build your own chatbot:

    from lazyllm import TrainableModule, deploy, WebModule
    # Model will be download automatically if you have an internet connection
    m = TrainableModule('internlm2-chat-7b').deploy_method(deploy.lightllm)
    WebModule(m).start().wait()

    Documents: https://lazyllm.readthedocs.io/

Community

For further information and discussion, join our discord server.

License

This repository is released under the Apache-2.0 license.

Acknowledgement

We learned a lot from the following projects when developing LightLLM.

About

LightLLM is a Python-based LLM (Large Language Model) inference and serving framework, notable for its lightweight design, easy scalability, and high-speed performance.

Topics

Resources

License

Stars

Watchers

Forks

Packages

 
 
 

Languages