Skip to content

Approximation Package for High-Dimensional Functions in Julia

License

Notifications You must be signed in to change notification settings

NFFT/ANOVAapprox.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

cb774e4 · Jan 13, 2025
Aug 1, 2024
Nov 9, 2021
Jan 13, 2025
Aug 1, 2024
Oct 9, 2020
Jan 13, 2025
Jan 13, 2025
Jul 12, 2022

Repository files navigation

ANOVAapprox.jl

ci codecov Aqua QA DOI

This package provides a framework for the method ANOVAapprox to approximate high-dimensional functions with a low superposition dimension or a sparse ANOVA decomposition from scattered data. The method has been dicussed and applied in the following articles/preprints:

  • D. Potts and M. Schmischke
    Interpretable transformed ANOVA approximation on the example of the prevention of forest fires
    arXiv, PDF
  • F. Bartel, D. Potts und M. Schmischke
    Grouped transformations and Regularization in high-dimensional explainable ANOVA approximation
    SIAM Journal on Scientific Computing (accepted)
    arXiv, PDF
  • D. Potts and M. Schmischke
    Interpretable approximation of high-dimensional data
    SIAM Journal on Mathematics of Data Science (accepted)
    arXiv, PDF, Software
  • D. Potts and M. Schmischke
    Learning multivariate functions with low-dimensional structures using polynomial bases
    Journal of Computational and Applied Mathematics 403, 113821, 2021
    DOI, arXiv, PDF
  • D. Potts and M. Schmischke
    Approximation of high-dimensional periodic functions with Fourier-based methods
    SIAM Journal on Numerical Analysis 59 (5), 2393-2429, 2021
    DOI, arXiv, PDF
  • L. Lippert, D. Potts and T. Ullrich
    Fast Hyperbolic Wavelet Regression meets ANOVA
    ArXiv: 2108.13197
    arXiv, PDF

ANOVAapprox.jl provides the following functionality:

  • approximation of high-dimensional periodic and nonperiodic functions with a sparse ANOVA decomposition
  • analysis tools for interpretability (global sensitvitiy indices, attribute ranking, shapley values)

Getting started

In Julia you can get started by typing

] add ANOVAapprox

then checkout the documentation.