-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathrender.py
executable file
·269 lines (231 loc) · 10.5 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import json
from os import makedirs
from time import time, perf_counter
from argparse import ArgumentParser
import torch
import torchvision
from tqdm import tqdm
import imageio
import numpy as np
from pathlib import Path
from scene import Scene
from scene.dataset_readers import loadCameras
from gaussian_renderer import render, GaussianModel
from utils.general_utils import safe_state
from utils.pose_utils import get_tensor_from_camera
from utils.loss_utils import l1_loss, ssim, l1_loss_mask, ssim_loss_mask
from utils.sfm_utils import save_time
from utils.camera_utils import generate_interpolated_path
from utils.camera_utils import visualizer
from arguments import ModelParams, PipelineParams, get_combined_args
def save_interpolate_pose(model_path, iter, n_views):
org_pose = np.load(model_path / f"pose/ours_{iter}/pose_optimized.npy")
visualizer(org_pose, ["green" for _ in org_pose], model_path / f"pose/ours_{iter}/poses_optimized.png")
n_interp = int(10 * 30 / n_views) # 10second, fps=30
all_inter_pose = []
for i in range(n_views-1):
tmp_inter_pose = generate_interpolated_path(poses=org_pose[i:i+2], n_interp=n_interp)
all_inter_pose.append(tmp_inter_pose)
all_inter_pose = np.concatenate(all_inter_pose, axis=0)
all_inter_pose = np.concatenate([all_inter_pose, org_pose[-1][:3, :].reshape(1, 3, 4)], axis=0)
inter_pose_list = []
for p in all_inter_pose:
tmp_view = np.eye(4)
tmp_view[:3, :3] = p[:3, :3]
tmp_view[:3, 3] = p[:3, 3]
inter_pose_list.append(tmp_view)
inter_pose = np.stack(inter_pose_list, 0)
visualizer(inter_pose, ["blue" for _ in inter_pose], model_path / f"pose/ours_{iter}/poses_interpolated.png")
np.save(model_path / f"pose/ours_{iter}/pose_interpolated.npy", inter_pose)
def images_to_video(image_folder, output_video_path, fps=30):
"""
Convert images in a folder to a video.
Args:
- image_folder (str): The path to the folder containing the images.
- output_video_path (str): The path where the output video will be saved.
- fps (int): Frames per second for the output video.
"""
images = []
for filename in sorted(os.listdir(image_folder)):
if filename.endswith(('.png', '.jpg', '.jpeg', '.JPG', '.PNG')):
image_path = os.path.join(image_folder, filename)
image = imageio.imread(image_path)
images.append(image)
imageio.mimwrite(output_video_path, images, fps=fps)
def render_set(model_path, name, iteration, views, gaussians, pipeline, background):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
camera_pose = get_tensor_from_camera(view.world_view_transform.transpose(0, 1))
rendering = render(
view, gaussians, pipeline, background, camera_pose=camera_pose
)["render"]
gt = view.original_image[0:3, :, :]
torchvision.utils.save_image(
rendering, os.path.join(render_path, "{0:05d}".format(idx) + ".png")
)
if name != "interp":
torchvision.utils.save_image(
gt, os.path.join(gts_path, "{0:05d}".format(idx) + ".png")
)
def render_set_optimize(model_path, name, iteration, views, gaussians, pipeline, background):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
gaussians._xyz.requires_grad_(False)
gaussians._features_dc.requires_grad_(False)
gaussians._features_rest.requires_grad_(False)
gaussians._opacity.requires_grad_(False)
gaussians._scaling.requires_grad_(False)
gaussians._rotation.requires_grad_(False)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
num_iter = args.optim_test_pose_iter
camera_pose = get_tensor_from_camera(view.world_view_transform.transpose(0, 1))
camera_tensor_T = camera_pose[-3:].requires_grad_()
camera_tensor_q = camera_pose[:4].requires_grad_()
pose_optimizer = torch.optim.Adam([
{"params": [camera_tensor_T], "lr": 0.003},
{"params": [camera_tensor_q], "lr": 0.001}
],
betas=(0.9, 0.999),
weight_decay=1e-4
)
# Add a learning rate scheduler
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(pose_optimizer, T_max=num_iter, eta_min=0.0001)
with tqdm(total=num_iter, desc=f"Tracking Time Step: {idx+1}", leave=True) as progress_bar:
candidate_q = camera_tensor_q.clone().detach()
candidate_T = camera_tensor_T.clone().detach()
current_min_loss = float(1e20)
gt = view.original_image[0:3, :, :]
initial_loss = None
for iteration in range(num_iter):
rendering = render(view, gaussians, pipeline, background, camera_pose=torch.cat([camera_tensor_q, camera_tensor_T]))["render"]
black_hole_threshold = 0.0
mask = (rendering > black_hole_threshold).float()
loss = l1_loss_mask(rendering, gt, mask)
loss.backward()
with torch.no_grad():
pose_optimizer.step()
pose_optimizer.zero_grad(set_to_none=True)
if iteration == 0:
initial_loss = loss.item() # Capture initial loss
if loss < current_min_loss:
current_min_loss = loss
candidate_q = camera_tensor_q.clone().detach()
candidate_T = camera_tensor_T.clone().detach()
progress_bar.update(1)
progress_bar.set_postfix(loss=loss.item(), initial_loss=initial_loss)
scheduler.step()
camera_tensor_q = candidate_q
camera_tensor_T = candidate_T
optimal_pose = torch.cat([camera_tensor_q, camera_tensor_T])
# print("optimal_pose-camera_pose: ", optimal_pose-camera_pose)
rendering_opt = render(view, gaussians, pipeline, background, camera_pose=optimal_pose)["render"]
torchvision.utils.save_image(
rendering_opt, os.path.join(render_path, view.image_name + ".png")
)
torchvision.utils.save_image(
gt, os.path.join(gts_path, view.image_name + ".png")
)
if args.test_fps:
print(">>> Calculate FPS: ")
fps_list = []
for _ in range(1000):
start = perf_counter()
_ = render(view, gaussians, pipeline, background, camera_pose=optimal_pose)
end = perf_counter()
fps_list.append(end - start)
fps_list.sort()
fps_list = fps_list[100:900]
fps = 1 / (sum(fps_list) / len(fps_list))
print(">>> FPS = ", fps)
with open(f"{model_path}/total_fps.json", 'a') as fp:
json.dump(f'{fps}', fp, indent=True)
fp.write('\n')
def render_sets(
dataset: ModelParams,
iteration: int,
pipeline: PipelineParams,
skip_train: bool,
skip_test: bool,
args,
):
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, opt=args, shuffle=False)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
# if not skip_train:
if not skip_train and not args.infer_video and not dataset.eval:
optimized_pose = np.load(Path(args.model_path) / 'pose' / f'ours_{iteration}' / 'pose_optimized.npy')
viewpoint_stack = loadCameras(optimized_pose, scene.getTrainCameras())
render_set(
dataset.model_path,
"train",
scene.loaded_iter,
viewpoint_stack,
gaussians,
pipeline,
background,
)
else:
start_time = time()
if not skip_test:
render_set_optimize(
dataset.model_path,
"test",
scene.loaded_iter,
scene.getTestCameras(),
gaussians,
pipeline,
background,
)
end_time = time()
save_time(dataset.model_path, '[4] render', end_time - start_time)
if args.infer_video and not dataset.eval:
save_interpolate_pose(Path(args.model_path), iteration, args.n_views)
interp_pose = np.load(Path(args.model_path) / 'pose' / f'ours_{iteration}' / 'pose_interpolated.npy')
viewpoint_stack = loadCameras(interp_pose, scene.getTrainCameras())
render_set(
dataset.model_path,
"interp",
scene.loaded_iter,
viewpoint_stack,
gaussians,
pipeline,
background,
)
image_folder = os.path.join(dataset.model_path, f'interp/ours_{iteration}/renders')
output_video_file = os.path.join(dataset.model_path, f'interp/ours_{iteration}/interp_{args.n_views}_view.mp4')
images_to_video(image_folder, output_video_file, fps=30)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=False)
pipeline = PipelineParams(parser)
parser.add_argument("--iterations", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--optim_test_pose_iter", default=500, type=int)
parser.add_argument("--infer_video", action="store_true")
parser.add_argument("--test_fps", action="store_true")
args = get_combined_args(parser)
print("Rendering " + args.model_path)
# Initialize system state (RNG)
# safe_state(args.quiet)
render_sets(model.extract(args), args.iterations, pipeline.extract(args), args.skip_train, args.skip_test, args)