-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathautoshot.py
50 lines (39 loc) · 1.55 KB
/
autoshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""AutoShot shot detection.
Requires `ffmpeg` installed on host.
"""
from functools import lru_cache
from pathlib import Path
from typing import Callable
import torch
from algo import utils
from algo.autoshot_pytorch import AutoShot
@lru_cache
def load_model() -> Callable[[torch.Tensor], torch.Tensor]:
"""Singleton of model."""
model = AutoShot()
state_dict = torch.load("algo/autoshot-pytorch-weights.pth", weights_only=True)["net"]
model.load_state_dict(state_dict)
model.eval().cuda()
return model
def detect(video_path: Path, threshold: float = 0.4) -> list[tuple[int, int]]:
"""Shot detection with AutoShot."""
model = load_model()
frames = utils.get_frames(video_path, height=27, width=48)
with torch.no_grad():
predictions = utils.get_predictions(model, frames, threshold)
scenes = utils.get_scenes(predictions)
return scenes.tolist()