-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtransnetv2_pytorch.py
366 lines (285 loc) · 14.3 KB
/
transnetv2_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# MIT License
#
# Copyright (c) 2020 Tomáš Souček
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TransNetV2 pytorch model.
Code adapted from https://github.com/soCzech/TransNetV2/commit/85cef72af9a916bdfd7cc94a670c9cdfbf12d1ed.
@article{soucek2020transnetv2,
title={TransNet V2: An effective deep network architecture for fast shot transition detection},
author={Sou{\v{c}}ek, Tom{\'a}{\v{s}} and Loko{\v{c}}, Jakub},
year={2020},
journal={arXiv preprint arXiv:2008.04838},
}
"""
import random
import torch
import torch.nn as nn
import torch.nn.functional as functional
class TransNetV2(nn.Module):
def __init__(self,
F=16, L=3, S=2, D=1024,
use_many_hot_targets=True,
use_frame_similarity=True,
use_color_histograms=True,
use_mean_pooling=False,
dropout_rate=0.5,
use_convex_comb_reg=False, # not supported
use_resnet_features=False, # not supported
use_resnet_like_top=False, # not supported
frame_similarity_on_last_layer=False): # not supported
super(TransNetV2, self).__init__()
if use_resnet_features or use_resnet_like_top or use_convex_comb_reg or frame_similarity_on_last_layer:
raise NotImplemented("Some options not implemented in Pytorch version of Transnet!")
self.SDDCNN = nn.ModuleList(
[StackedDDCNNV2(in_filters=3, n_blocks=S, filters=F, stochastic_depth_drop_prob=0.)] +
[StackedDDCNNV2(in_filters=(F * 2 ** (i - 1)) * 4, n_blocks=S, filters=F * 2 ** i) for i in range(1, L)]
)
self.frame_sim_layer = FrameSimilarity(
sum([(F * 2 ** i) * 4 for i in range(L)]), lookup_window=101, output_dim=128, similarity_dim=128, use_bias=True
) if use_frame_similarity else None
self.color_hist_layer = ColorHistograms(
lookup_window=101, output_dim=128
) if use_color_histograms else None
self.dropout = nn.Dropout(dropout_rate) if dropout_rate is not None else None
output_dim = ((F * 2 ** (L - 1)) * 4) * 3 * 6 # 3x6 for spatial dimensions
if use_frame_similarity: output_dim += 128
if use_color_histograms: output_dim += 128
self.fc1 = nn.Linear(output_dim, D)
self.cls_layer1 = nn.Linear(D, 1)
self.cls_layer2 = nn.Linear(D, 1) if use_many_hot_targets else None
self.use_mean_pooling = use_mean_pooling
self.eval()
def forward(self, inputs):
assert isinstance(inputs, torch.Tensor) and list(inputs.shape[2:]) == [27, 48, 3] and inputs.dtype == torch.uint8, \
"incorrect input type and/or shape"
# uint8 of shape [B, T, H, W, 3] to float of shape [B, 3, T, H, W]
x = inputs.permute([0, 4, 1, 2, 3]).float()
x = x.div_(255.)
block_features = []
for block in self.SDDCNN:
x = block(x)
block_features.append(x)
if self.use_mean_pooling:
x = torch.mean(x, dim=[3, 4])
x = x.permute(0, 2, 1)
else:
x = x.permute(0, 2, 3, 4, 1)
x = x.reshape(x.shape[0], x.shape[1], -1)
if self.frame_sim_layer is not None:
x = torch.cat([self.frame_sim_layer(block_features), x], 2)
if self.color_hist_layer is not None:
x = torch.cat([self.color_hist_layer(inputs), x], 2)
x = self.fc1(x)
x = functional.relu(x)
if self.dropout is not None:
x = self.dropout(x)
one_hot = self.cls_layer1(x)
# scale from 0 to 1
one_hot = torch.sigmoid(one_hot)
return one_hot
class StackedDDCNNV2(nn.Module):
def __init__(self,
in_filters,
n_blocks,
filters,
shortcut=True,
use_octave_conv=False, # not supported
pool_type="avg",
stochastic_depth_drop_prob=0.0):
super(StackedDDCNNV2, self).__init__()
if use_octave_conv:
raise NotImplemented("Octave convolution not implemented in Pytorch version of Transnet!")
assert pool_type == "max" or pool_type == "avg"
if use_octave_conv and pool_type == "max":
print("WARN: Octave convolution was designed with average pooling, not max pooling.")
self.shortcut = shortcut
self.DDCNN = nn.ModuleList([
DilatedDCNNV2(in_filters if i == 1 else filters * 4, filters, octave_conv=use_octave_conv,
activation=functional.relu if i != n_blocks else None) for i in range(1, n_blocks + 1)
])
self.pool = nn.MaxPool3d(kernel_size=(1, 2, 2)) if pool_type == "max" else nn.AvgPool3d(kernel_size=(1, 2, 2))
self.stochastic_depth_drop_prob = stochastic_depth_drop_prob
def forward(self, inputs):
x = inputs
shortcut = None
for block in self.DDCNN:
x = block(x)
if shortcut is None:
shortcut = x
x = functional.relu(x)
if self.shortcut is not None:
if self.stochastic_depth_drop_prob != 0.:
if self.training:
if random.random() < self.stochastic_depth_drop_prob:
x = shortcut
else:
x = x + shortcut
else:
x = (1 - self.stochastic_depth_drop_prob) * x + shortcut
else:
x += shortcut
x = self.pool(x)
return x
class DilatedDCNNV2(nn.Module):
def __init__(self,
in_filters,
filters,
batch_norm=True,
activation=None,
octave_conv=False): # not supported
super(DilatedDCNNV2, self).__init__()
if octave_conv:
raise NotImplemented("Octave convolution not implemented in Pytorch version of Transnet!")
assert not (octave_conv and batch_norm)
self.Conv3D_1 = Conv3DConfigurable(in_filters, filters, 1, use_bias=not batch_norm)
self.Conv3D_2 = Conv3DConfigurable(in_filters, filters, 2, use_bias=not batch_norm)
self.Conv3D_4 = Conv3DConfigurable(in_filters, filters, 4, use_bias=not batch_norm)
self.Conv3D_8 = Conv3DConfigurable(in_filters, filters, 8, use_bias=not batch_norm)
self.bn = nn.BatchNorm3d(filters * 4, eps=1e-3) if batch_norm else None
self.activation = activation
def forward(self, inputs):
conv1 = self.Conv3D_1(inputs)
conv2 = self.Conv3D_2(inputs)
conv3 = self.Conv3D_4(inputs)
conv4 = self.Conv3D_8(inputs)
x = torch.cat([conv1, conv2, conv3, conv4], dim=1)
if self.bn is not None:
x = self.bn(x)
if self.activation is not None:
x = self.activation(x)
return x
class Conv3DConfigurable(nn.Module):
def __init__(self,
in_filters,
filters,
dilation_rate,
separable=True,
octave=False, # not supported
use_bias=True,
kernel_initializer=None): # not supported
super(Conv3DConfigurable, self).__init__()
if octave:
raise NotImplemented("Octave convolution not implemented in Pytorch version of Transnet!")
if kernel_initializer is not None:
raise NotImplemented("Kernel initializers are not implemented in Pytorch version of Transnet!")
assert not (separable and octave)
if separable:
# (2+1)D convolution https://arxiv.org/pdf/1711.11248.pdf
conv1 = nn.Conv3d(in_filters, 2 * filters, kernel_size=(1, 3, 3),
dilation=(1, 1, 1), padding=(0, 1, 1), bias=False)
conv2 = nn.Conv3d(2 * filters, filters, kernel_size=(3, 1, 1),
dilation=(dilation_rate, 1, 1), padding=(dilation_rate, 0, 0), bias=use_bias)
self.layers = nn.ModuleList([conv1, conv2])
else:
conv = nn.Conv3d(in_filters, filters, kernel_size=3,
dilation=(dilation_rate, 1, 1), padding=(dilation_rate, 1, 1), bias=use_bias)
self.layers = nn.ModuleList([conv])
def forward(self, inputs):
x = inputs
for layer in self.layers:
x = layer(x)
return x
class FrameSimilarity(nn.Module):
def __init__(self,
in_filters,
similarity_dim=128,
lookup_window=101,
output_dim=128,
stop_gradient=False, # not supported
use_bias=False):
super(FrameSimilarity, self).__init__()
if stop_gradient:
raise NotImplemented("Stop gradient not implemented in Pytorch version of Transnet!")
self.projection = nn.Linear(in_filters, similarity_dim, bias=use_bias)
self.fc = nn.Linear(lookup_window, output_dim)
self.lookup_window = lookup_window
assert lookup_window % 2 == 1, "`lookup_window` must be odd integer"
def forward(self, inputs):
x = torch.cat([torch.mean(x, dim=[3, 4]) for x in inputs], dim=1)
x = torch.transpose(x, 1, 2)
x = self.projection(x)
x = functional.normalize(x, p=2, dim=2)
batch_size, time_window = x.shape[0], x.shape[1]
similarities = torch.bmm(x, x.transpose(1, 2)) # [batch_size, time_window, time_window]
similarities_padded = functional.pad(similarities, [(self.lookup_window - 1) // 2, (self.lookup_window - 1) // 2])
batch_indices = torch.arange(0, batch_size, device=x.device).view([batch_size, 1, 1]).repeat(
[1, time_window, self.lookup_window])
time_indices = torch.arange(0, time_window, device=x.device).view([1, time_window, 1]).repeat(
[batch_size, 1, self.lookup_window])
lookup_indices = torch.arange(0, self.lookup_window, device=x.device).view([1, 1, self.lookup_window]).repeat(
[batch_size, time_window, 1]) + time_indices
similarities = similarities_padded[batch_indices, time_indices, lookup_indices]
return functional.relu(self.fc(similarities))
class ColorHistograms(nn.Module):
def __init__(self,
lookup_window=101,
output_dim=None):
super(ColorHistograms, self).__init__()
self.fc = nn.Linear(lookup_window, output_dim) if output_dim is not None else None
self.lookup_window = lookup_window
assert lookup_window % 2 == 1, "`lookup_window` must be odd integer"
@staticmethod
def compute_color_histograms(frames):
frames = frames.int()
def get_bin(frames):
# returns 0 .. 511
R, G, B = frames[:, :, 0], frames[:, :, 1], frames[:, :, 2]
R, G, B = R >> 5, G >> 5, B >> 5
return (R << 6) + (G << 3) + B
batch_size, time_window, height, width, no_channels = frames.shape
assert no_channels == 3
frames_flatten = frames.view(batch_size * time_window, height * width, 3)
binned_values = get_bin(frames_flatten)
frame_bin_prefix = (torch.arange(0, batch_size * time_window, device=frames.device) << 9).view(-1, 1)
binned_values = (binned_values + frame_bin_prefix).view(-1)
histograms = torch.zeros(batch_size * time_window * 512, dtype=torch.int32, device=frames.device)
histograms.scatter_add_(0, binned_values, torch.ones(len(binned_values), dtype=torch.int32, device=frames.device))
histograms = histograms.view(batch_size, time_window, 512).float()
histograms_normalized = functional.normalize(histograms, p=2, dim=2)
return histograms_normalized
def forward(self, inputs):
x = self.compute_color_histograms(inputs)
batch_size, time_window = x.shape[0], x.shape[1]
similarities = torch.bmm(x, x.transpose(1, 2)) # [batch_size, time_window, time_window]
similarities_padded = functional.pad(similarities, [(self.lookup_window - 1) // 2, (self.lookup_window - 1) // 2])
batch_indices = torch.arange(0, batch_size, device=x.device).view([batch_size, 1, 1]).repeat(
[1, time_window, self.lookup_window])
time_indices = torch.arange(0, time_window, device=x.device).view([1, time_window, 1]).repeat(
[batch_size, 1, self.lookup_window])
lookup_indices = torch.arange(0, self.lookup_window, device=x.device).view([1, 1, self.lookup_window]).repeat(
[batch_size, time_window, 1]) + time_indices
similarities = similarities_padded[batch_indices, time_indices, lookup_indices]
if self.fc is not None:
return functional.relu(self.fc(similarities))
return similarities