Skip to content
Luís Felipe Garlet Millani edited this page Aug 9, 2016 · 31 revisions

Autotuning 1D Lagrange with BOAST

This document describes a way to optimize a 1D Lagrange code from Gysela. The original code was written for Intel Xeon Phi, so many of the original optimizations decrease performance on other platforms.

Original C Source Code

// [gys_gl@helios91 proto_lagrange1d]$ export OMP_NUM_THREADS=236; export KMP_PLACE_THREADS=59c,4t; mic_launch
// OK 0 0 0 0, 0.00000e+00 0.00000e+00 0.00000e+00
// OK 25 51 6 3, 5.05127e-01 5.05128e-01 -6.87234e-08
// OK 22 51 6 19, 4.75175e-01 4.75175e-01 -6.46483e-08
// OK 50 102 12 6, -4.13077e-01 -4.13077e-01 5.61999e-08
// OK 47 102 12 22, -4.86272e-01 -4.86272e-01 6.61581e-08
// OK 75 25 19 9, 2.82227e-01 2.82227e-01 -3.83974e-08
// OK 72 25 19 25, 2.13777e-01 2.13777e-01 -2.90847e-08
// OK 97 76 25 28, -5.63214e-01 -5.63214e-01 7.66262e-08
// OK 100 76 25 12, -5.51022e-01 -5.51022e-01 7.49674e-08
// OK 125 127 31 15, -5.86072e-04 -5.86072e-04 7.97361e-11
// OK 122 127 31 31, -1.27696e-03 -1.27696e-03 1.73732e-10
// 
// Timer             fn_advec lastcall :       2541.00000 us  summing up all calls:      37243.00000 us
// == end timer list level 1 ==, lastcalls:         2541.00000 us, summing up :        37243.00000 
// Time 2541000.0 nano s,    Bandwidth 105.6 GB/s, GFLOps 46.2
//
// [gys_gl@helios88 proto_lagrange1d]$ export OMP_NUM_THREADS=16; unset KMP_PLACE_THREADS; sb_launch
// OK 0 0 0 0, 0.00000e+00 0.00000e+00 0.00000e+00
// OK 50 102 12 6, -4.13077e-01 -4.13077e-01 5.61999e-08
// OK 47 102 12 22, -4.86272e-01 -4.86272e-01 6.61581e-08
// OK 100 76 25 12, -5.51022e-01 -5.51022e-01 7.49674e-08
// OK 97 76 25 28, -5.63214e-01 -5.63214e-01 7.66262e-08
// OK 25 51 6 3, 5.05127e-01 5.05128e-01 -6.87234e-08
// OK 22 51 6 19, 4.75175e-01 4.75175e-01 -6.46483e-08
// OK 72 25 19 25, 2.13777e-01 2.13777e-01 -2.90847e-08
// OK 75 25 19 9, 2.82227e-01 2.82227e-01 -3.83974e-08
// OK 122 127 31 31, -1.27696e-03 -1.27696e-03 1.73732e-10
// OK 125 127 31 15, -5.86072e-04 -5.86072e-04 7.97361e-11
// 
// Timer             fn_advec lastcall :       4692.00000 us  summing up all calls:      28469.00000 us
// == end timer list level 1 ==, lastcalls:         4692.00000 us, summing up :        28469.00000 
// Time 4692000.0 nano s,    Bandwidth 57.2 GB/s, GFLOps 25.0
// 
#ifdef _HANDCLOCK_
#define _CLOCK_VARDEFINE
#include "clock.h"
#endif
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#if defined(__MIC__)
#include <immintrin.h>
#endif

#ifndef NBREPEAT
#define NBREPEAT 2
#endif
#ifndef NR
#define NR 128
#endif
#ifndef NTHETA
#define NTHETA 128
#endif
#ifndef NVPAR
#define NVPAR 32
#endif
#ifndef NPHI
#define NPHI 32
#endif

#define DECNR 8
#define ALLOCSIZER (2*DECNR+NR)
  
#define FVAL(f,i1,i2,i3,i4) \
 f[DECNR+i1+ALLOCSIZER*(i2+NTHETA*(i3+NPHI*(i4)))]

typedef struct {
  double thetamin, dtheta;
  double phimin, dphi;
  double rmin, dr;
  double vparmin, dvpar;
  double *thetatmp;
  double *phitmp;
  double *rtmp;
} geom_t;

int fn_init(double *f, geom_t *geom) {
  int ivpar, iphi, itheta,ir;
  double rval, thval, pval, vval;
  geom->rtmp = malloc(NR*sizeof(double));
  geom->thetatmp = malloc(NTHETA*sizeof(double));
  geom->phitmp = malloc(NPHI*sizeof(double));
  for (iphi=0; iphi<NPHI; iphi++) geom->phitmp[iphi]=sin( geom->phimin   + iphi  *geom->dphi );
  for (itheta=0; itheta<NTHETA; itheta++) geom->thetatmp[itheta]=sin( geom->thetamin + itheta*geom->dtheta + geom->dtheta*.5);
  for (ir=0; ir<NR; ir++) geom->rtmp[ir] = sin( ir*geom->dr );

#pragma omp parallel for schedule(static) private(ir,itheta,iphi,ivpar,rval,thval,pval,vval)
  for (ivpar=0; ivpar<NVPAR; ivpar++) {
    for (iphi=0; iphi<NPHI; iphi++) {
      for (itheta=0; itheta<NTHETA; itheta++) {
#pragma vector always
#pragma ivdep
	for (ir=0; ir<NR; ir++) {
          rval  = geom->rtmp[ir];
	  thval = geom->thetatmp[itheta];
	  pval  = geom->phitmp[iphi];
          vval  = 1.;
	  FVAL(f,ir,itheta,iphi,ivpar) = rval * thval * pval * vval;
	}
      }
    }
  }
  return 0;
}

int fn_verif(double *f, geom_t *geom) {
  int ivpar, iphi, itheta, ir;
  int64_t count, modulo;
  double rval, thval, pval, vval;
  double numres, exact;
  modulo = NR*NTHETA*NPHI*NVPAR/10;
  for (iphi=0; iphi<NPHI; iphi++) geom->phitmp[iphi]=sin( geom->phimin   + iphi  *geom->dphi );
  for (itheta=0; itheta<NTHETA; itheta++) geom->thetatmp[itheta]=sin( geom->thetamin + itheta*geom->dtheta + geom->dtheta*.5);
  for (ir=0; ir<NR; ir++) geom->rtmp[ir] = sin( ir*geom->dr +.5*geom->dr);

#pragma omp parallel for schedule(static) private(ir,itheta,iphi,ivpar,count,rval,thval,pval,vval, \
						  numres,exact)
  for (ivpar=0; ivpar<NVPAR; ivpar++) {
    for (iphi=0; iphi<NPHI; iphi++) {
      for (itheta=0; itheta<NTHETA; itheta++) {
	for (ir=0; ir<NR; ir++) {
          count=ir+NR*(itheta+NTHETA*(iphi+NPHI*ivpar));
          rval  = geom->rtmp[ir];
	  thval = geom->thetatmp[itheta];
	  pval  = geom->phitmp[iphi];
          vval  = 1.;

          numres = FVAL(f,ir,itheta,iphi,ivpar);
          exact  = rval * thval * pval * vval; 
	    if (!(fabs(numres-exact) < 1.e-4)) {
#pragma omp critical 
	      {
		printf( "ERROR! at %d %d %d %d, %.5e %.5e %.5e\n",
			ir,itheta,iphi,ivpar,numres,exact,numres-exact );
		exit(2);
	      }
	    } else {
	      if (count%modulo == 0) {
#pragma omp critical 
		{
		  printf( "OK %d %d %d %d, %.5e %.5e %.5e\n",
			  ir,itheta,iphi,ivpar,numres,exact,numres-exact );
		}
	      }
	    }
	}
      }
    }
  }
  return 0;
}

inline void lag4(double posx, double *coef) {
  double loc[4] = { -1./6., 1./2., -1./2., 1./6. };
  coef[0] = loc[0] * (posx-1.) * (posx-2.) * (posx-3.);
  coef[1] = loc[1] * (posx)    * (posx-2.) * (posx-3.);
  coef[2] = loc[2] * (posx)    * (posx-1.) * (posx-3.);
  coef[3] = loc[3] * (posx)    * (posx-1.) * (posx-2.);
}

int fn_advec_int(double *f0, double *f1, geom_t *geom) {
  int ivpar, iphi, itheta, ir;
  double numres, posx;
  double coef0, coef1, coef2, coef3;

#if defined(__MIC__)
  __assume_aligned(f0, 64);
  __assume_aligned(f1, 64);
  TIMER_DEFINE(advec1D, "fn_advec_int"  , 1);
  TIMER_BEGIN(advec1D);

#pragma omp parallel private(ir,itheta,iphi,ivpar, \
			     numres,coef0,coef1,coef2,coef3,posx)
  for (ivpar=0; ivpar<NVPAR; ivpar++) {
#pragma omp for schedule(static) collapse(2)
    for (iphi=0; iphi<NPHI; iphi++) {
      for (itheta=0; itheta<NTHETA; itheta++) {
	  register __m512d coeff1;
	  register __m512d coeff2;
	  register __m512d coeff3;
	  register __m512d coeff4;
 	  register double* ptread;

	  register __m512d tmpw;
	  register __m512d tmpr1;
	  register __m512d tmpr2;
	  register __m512d tmpr3; 
	  register __m512d tmpr4; 


	  posx = 1.5;
	  // 6*4/8=3 flop par indice ir
	  coeff1 = _mm512_set1_pd(-1./6. * (posx-1.) * (posx-2.) * (posx-3.));
	  coeff2 = _mm512_set1_pd(1./2. * (posx)    * (posx-2.) * (posx-3.));
	  coeff3 = _mm512_set1_pd(-1./2. * (posx)    * (posx-1.) * (posx-3.));
	  coeff4 = _mm512_set1_pd(1./6. * (posx)    * (posx-1.) * (posx-2.));

#pragma vector nontemporal
#pragma vector always 
	for (ir=0; ir<DECNR; ir++) {
	  FVAL(f0,ir-DECNR,itheta,iphi,ivpar) = FVAL(f0,NR-DECNR+ir,itheta,iphi,ivpar);
	}
#pragma vector nontemporal
#pragma vector always 
	for (ir=0; ir<DECNR; ir++) {
	  FVAL(f0,NR+ir,itheta,iphi,ivpar) = FVAL(f0,ir,itheta,iphi,ivpar);
	}

#pragma novector 
	for (ir=0; ir<NR; ir+=8) {
	  ptread = &(FVAL(f0,ir,itheta,iphi,ivpar));
	  tmpr2 = _mm512_load_pd  (ptread);
	  tmpr1 = _mm512_loadunpacklo_pd(tmpr1, ptread-1);
	  tmpr1 = _mm512_loadunpackhi_pd(tmpr1, ptread-1+8);
	  tmpr3 = _mm512_loadunpacklo_pd(tmpr3, ptread+1);
	  tmpr3 = _mm512_loadunpackhi_pd(tmpr3, ptread+1+8);
	  tmpr4 = _mm512_loadunpacklo_pd(tmpr4, ptread+2);
	  tmpr4 = _mm512_loadunpackhi_pd(tmpr4, ptread+2+8);

	  // 1+2+2+2=7 flop par indice ir
	  tmpw = _mm512_mul_pd(tmpr1,coeff1);
	  tmpw = _mm512_fmadd_pd(tmpr2,coeff2,tmpw);
	  tmpw = _mm512_fmadd_pd(tmpr3,coeff3,tmpw);
	  tmpw = _mm512_fmadd_pd(tmpr4,coeff4,tmpw);

	  _mm512_store_pd (&(FVAL(f1,ir,itheta,iphi,ivpar)), tmpw);
	}
      }
    }
  }

  TIMER_END(advec1D);
#endif
  return 0;

}

int fn_advec_unroll_try(double *f0, double *f1, geom_t *geom) {
  int ivpar, iphi, itheta, ir, cir;
  double numres, posx, tmpf;
  double coef0, coef1, coef2, coef3;

  __assume_aligned(f0, 64);
  __assume_aligned(f1, 64);
  TIMER_DEFINE(advec1D, "fn_advec"  , 1);
  TIMER_BEGIN(advec1D);

#pragma omp parallel private(ir,itheta,iphi,ivpar,cir,			\
			     numres,coef0,coef1,coef2,coef3,posx,tmpf)
#pragma omp for schedule(static) collapse(3)
  for (ivpar=0; ivpar<NVPAR; ivpar++) {
    for (iphi=0; iphi<NPHI; iphi++) {
      for (itheta=0; itheta<NTHETA; itheta++) {

#pragma vector always
#pragma vector nontemporal
	for (ir=0; ir<DECNR; ir++) {
	  FVAL(f0,ir-DECNR,itheta,iphi,ivpar) = FVAL(f0,NR-DECNR+ir,itheta,iphi,ivpar);
	}
#pragma vector always
#pragma vector nontemporal
	for (ir=0; ir<DECNR; ir++) {
	  FVAL(f0,NR+ir,itheta,iphi,ivpar) = FVAL(f0,ir,itheta,iphi,ivpar);
	}

	posx = 1.5;
#pragma vector always
#pragma vector nontemporal
	for (ir=0; ir<NR; ir++) {
	  double coeff[] = {-1./6. * (posx-1.) * (posx-2.) * (posx-3.) ,
			    1./2. * (posx)    * (posx-2.) * (posx-3.) ,
			    -1./2. * (posx)    * (posx-1.) * (posx-3.) ,
			    1./6. * (posx)    * (posx-1.) * (posx-2.) };
	  
	  tmpf = 0;
#pragma unroll(4)
	  for (cir=0; cir<4; cir++) {
	    tmpf += FVAL(f0,ir-1+cir,itheta,iphi,ivpar) * coeff[cir];
	  }
	  // 7 flop par indice ir
	  FVAL(f1,ir,itheta,iphi,ivpar)  = tmpf;
	}
      }
    }
  }

  TIMER_END(advec1D);
  return 0;

}

int fn_advec(double *f0, double *f1, geom_t *geom) {
  int ivpar, iphi, itheta, ir;
  double numres, posx;
  double coef0, coef1, coef2, coef3;

  __assume_aligned(f0, 64);
  __assume_aligned(f1, 64);
  TIMER_DEFINE(advec1D, "fn_advec"  , 1);
  TIMER_BEGIN(advec1D);

#pragma omp parallel private(ir,itheta,iphi,ivpar, \
			     numres,coef0,coef1,coef2,coef3,posx)
#pragma omp for schedule(static) collapse(3)
  for (ivpar=0; ivpar<NVPAR; ivpar++) {
    for (iphi=0; iphi<NPHI; iphi++) {
      for (itheta=0; itheta<NTHETA; itheta++) {

#pragma vector always
#pragma vector nontemporal
	for (ir=0; ir<DECNR; ir++) {
	  FVAL(f0,ir-DECNR,itheta,iphi,ivpar) = FVAL(f0,NR-DECNR+ir,itheta,iphi,ivpar);
	}
#pragma vector always
#pragma vector nontemporal
	for (ir=0; ir<DECNR; ir++) {
	  FVAL(f0,NR+ir,itheta,iphi,ivpar) = FVAL(f0,ir,itheta,iphi,ivpar);
	}

#pragma vector always
#pragma vector nontemporal
	for (ir=0; ir<NR; ir++) {
	  posx = 1.5;

	  FVAL(f1,ir,itheta,iphi,ivpar) = 
	    -1./6. * (posx-1.) * (posx-2.) * (posx-3.) * 
	    FVAL(f0,ir-1+0,itheta,iphi,ivpar) +
	    1./2. * (posx)    * (posx-2.) * (posx-3.) *
	    FVAL(f0,ir-1+1,itheta,iphi,ivpar) + 
	    -1./2. * (posx)    * (posx-1.) * (posx-3.) *
	    FVAL(f0,ir-1+2,itheta,iphi,ivpar) +
	    1./6. * (posx)    * (posx-1.) * (posx-2.) *
	    FVAL(f0,ir-1+3,itheta,iphi,ivpar);
	}
      }
    }
  }

  TIMER_END(advec1D);
  return 0;

}


int geom_init(geom_t* geom) {
  geom->thetamin = 0.;
  geom->dtheta = 2*M_PI/NTHETA;
  geom->phimin = 0.;
  geom->dphi   = 2*M_PI/NPHI;
  geom->dr     = 2*M_PI/NR;
  return 0;
}

int main(int argc, char **argv) {
  geom_t geom;
  double *fn, *fnp1;
  double timef;
  long long int i, sizebytes, real_nbbytes, nbops;

  geom_init( &geom );
  sizebytes = sizeof(double)*ALLOCSIZER*NTHETA*NPHI*NVPAR;
  real_nbbytes = sizeof(double)*NR*NTHETA*NPHI*NVPAR;
  nbops = NR*NTHETA*NPHI*NVPAR*7;
  fn   = (double*) _mm_malloc(sizebytes,64); 
  fnp1 = (double*) _mm_malloc(sizebytes,64);
  //  printf( "deb %p %p\n", fn, fnp1);

  fn_init( fn, &geom );
  for (i=0; i<NBREPEAT; i++) {
#ifdef _INTRIN_  
    fn_advec_int(fn, fnp1, &geom);
#else
    fn_advec( fn, fnp1, &geom);
#endif
  }
  fn_verif( fnp1, &geom );
  TIMER_PRINT_LIST(1);
  timef = (timer_list[0][1])->ldiff_val*1000;
  printf( "Time %.1f nano s,    Bandwidth %.1f GB/s, GFLOps %.1f\n",timef,2*real_nbbytes/timef,nbops/timef);
}

Step-by-Step: Rewriting the Code With BOAST

First include BOAST in the script

require 'BOAST'
include BOAST

BOAST can handle the timing, so we can ignore the timing part of the original code.

Declare the constants used by the code.

NR=128
NTHETA=128
NVPAR=32
NPHI=32
DECNR=8
ALLOCSIZER=(2*DECNR+NR)

Create a reference implementation we can compare against. We can use this to know if an optimization produces invalid results. We are using C code, so we will use C as the language instead of Fortran or CL.

def generate_reference()
  push_env( :lang => C )

Still inside the reference function, generate_reference, we will create one code block for each part of our reference implementation.

We start by copying the macros and typedefs:

  macro_ref = <<EOF
#ifndef NBREPEAT
#define NBREPEAT 2
#endif
#ifndef NR
#define NR 128
#endif
#ifndef NTHETA
#define NTHETA 128
#endif
#ifndef NVPAR
#define NVPAR 32
#endif
#ifndef NPHI
#define NPHI 32
#endif

#define DECNR 8
#define ALLOCSIZER (2*DECNR+NR)
  
#define FVAL(f,i1,i2,i3,i4) \
 f[DECNR+i1+ALLOCSIZER*(i2+NTHETA*(i3+NPHI*(i4)))]

typedef struct {
  double thetamin, dtheta;
  double phimin, dphi;
  double rmin, dr;
  double vparmin, dvpar;
  double *thetatmp;
  double *phitmp;
  double *rtmp;
} geom_t;
EOF

We do the same for all functions.

fn_advec, which computes the Lagrange:

  code_ref= <<EOF
int fn_advec(double *f0, double *f1, geom_t *geom) {
  int ivpar, iphi, itheta, ir;
  double numres, posx;
  double coef0, coef1, coef2, coef3;

  __assume_aligned(f0, 64);
  __assume_aligned(f1, 64);

#pragma omp parallel private(ir,itheta,iphi,ivpar, \
			     numres,coef0,coef1,coef2,coef3,posx)
#pragma omp for schedule(static) collapse(3)
  for (ivpar=0; ivpar<NVPAR; ivpar++) {
    for (iphi=0; iphi<NPHI; iphi++) {
      for (itheta=0; itheta<NTHETA; itheta++) {

#pragma vector always
#pragma vector nontemporal
	for (ir=0; ir<DECNR; ir++) {
	  FVAL(f0,ir-DECNR,itheta,iphi,ivpar) = FVAL(f0,NR-DECNR+ir,itheta,iphi,ivpar);
	}
#pragma vector always
#pragma vector nontemporal
	for (ir=0; ir<DECNR; ir++) {
	  FVAL(f0,NR+ir,itheta,iphi,ivpar) = FVAL(f0,ir,itheta,iphi,ivpar);
	}

#pragma vector always
#pragma vector nontemporal
	for (ir=0; ir<NR; ir++) {
	  posx = 1.5;

	  FVAL(f1,ir,itheta,iphi,ivpar) = 
	    -1./6. * (posx-1.) * (posx-2.) * (posx-3.) * 
	    FVAL(f0,ir-1+0,itheta,iphi,ivpar) +
	    1./2. * (posx)    * (posx-2.) * (posx-3.) *
	    FVAL(f0,ir-1+1,itheta,iphi,ivpar) + 
	    -1./2. * (posx)    * (posx-1.) * (posx-3.) *
	    FVAL(f0,ir-1+2,itheta,iphi,ivpar) +
	    1./6. * (posx)    * (posx-1.) * (posx-2.) *
	    FVAL(f0,ir-1+3,itheta,iphi,ivpar);
	}
      }
    }
  }

  return 0;

}
EOF

fn_init, responsible for initialization:

  init_ref = <<EOF
int fn_init(double *f, geom_t *geom) {
  int ivpar, iphi, itheta,ir;
  double rval, thval, pval, vval;
  geom->rtmp = malloc(NR*sizeof(double));
  geom->thetatmp = malloc(NTHETA*sizeof(double));
  geom->phitmp = malloc(NPHI*sizeof(double));
  for (iphi=0; iphi<NPHI; iphi++) geom->phitmp[iphi]=sin( geom->phimin   + iphi  *geom->dphi );
  for (itheta=0; itheta<NTHETA; itheta++) geom->thetatmp[itheta]=sin( geom->thetamin + itheta*geom->dtheta + geom->dtheta*.5);
  for (ir=0; ir<NR; ir++) geom->rtmp[ir] = sin( ir*geom->dr );

#pragma omp parallel for schedule(static) private(ir,itheta,iphi,ivpar,rval,thval,pval,vval)
  for (ivpar=0; ivpar<NVPAR; ivpar++) {
    for (iphi=0; iphi<NPHI; iphi++) {
      for (itheta=0; itheta<NTHETA; itheta++) {
#pragma vector always
#pragma ivdep
	for (ir=0; ir<NR; ir++) {
          rval  = geom->rtmp[ir];
	  thval = geom->thetatmp[itheta];
	  pval  = geom->phitmp[iphi];
          vval  = 1.;
	  FVAL(f,ir,itheta,iphi,ivpar) = rval * thval * pval * vval;
	}
      }
    }
  }
  return 0;
}
EOF

code_verif, which verifies the validity of the results:

  code_verif = <<EOF
int fn_verif(double *f, geom_t *geom) {
  int ivpar, iphi, itheta, ir;
  int64_t count, modulo;
  double rval, thval, pval, vval;
  double numres, exact;
  modulo = NR*NTHETA*NPHI*NVPAR/10;
  for (iphi=0; iphi<NPHI; iphi++) geom->phitmp[iphi]=sin( geom->phimin   + iphi  *geom->dphi );
  for (itheta=0; itheta<NTHETA; itheta++) geom->thetatmp[itheta]=sin( geom->thetamin + itheta*geom->dtheta + geom->dtheta*.5);
  for (ir=0; ir<NR; ir++) geom->rtmp[ir] = sin( ir*geom->dr +.5*geom->dr);

#pragma omp parallel for schedule(static) private(ir,itheta,iphi,ivpar,count,rval,thval,pval,vval, \
						  numres,exact)
  for (ivpar=0; ivpar<NVPAR; ivpar++) {
    for (iphi=0; iphi<NPHI; iphi++) {
      for (itheta=0; itheta<NTHETA; itheta++) {
	for (ir=0; ir<NR; ir++) {
          count=ir+NR*(itheta+NTHETA*(iphi+NPHI*ivpar));
          rval  = geom->rtmp[ir];
	  thval = geom->thetatmp[itheta];
	  pval  = geom->phitmp[iphi];
          vval  = 1.;

          numres = FVAL(f,ir,itheta,iphi,ivpar);
          exact  = rval * thval * pval * vval; 
	    if (!(fabs(numres-exact) < 1.e-4)) {
#pragma omp critical 
	      {
		printf( "ERROR! at %d %d %d %d, %.5e %.5e %.5e\\n",
			ir,itheta,iphi,ivpar,numres,exact,numres-exact );
		exit(2);
	      }
	    } else {
	      if (count%modulo == 0) {
#pragma omp critical 
		{
	//	  printf( "OK %d %d %d %d, %.5e %.5e %.5e\\n",
//			  ir,itheta,iphi,ivpar,numres,exact,numres-exact );
		}
	      }
	    }
	}
      }
    }
  }
  return 0;
}
EOF

We now declare the input and output variables f, f0, and f1. Notice while in the reference code these are of type double, in BOAST that type is called Real. These variables have more than one dimension, whose sizes are defined with Dim.

Input variables, which are sent to the kernel, must be specified with :dir => :in.

Output variables, which are calculated by the kernel, must be specified with :dir => :out.

If a variable is used both for input and output, use :dir => :inout.

f = Real( "f", :dim => [Dim(ALLOCSIZER),Dim(NTHETA),Dim(NPHI),Dim(NVPAR)], :dir => :out)
f0 = Real( "f0", :dim => [Dim(ALLOCSIZER),Dim(NTHETA),Dim(NPHI),Dim(NVPAR)], :dir => :in)
f1 = Real( "f1", :dim => [Dim(ALLOCSIZER),Dim(NTHETA),Dim(NPHI),Dim(NVPAR)], :dir => :out)

Notice how the name of the variables appears in two places. For instance, in /f = Real("f", ...) the first f is the name used by our script and the second “f” is the name used inside the kernel.

We also need a struct: geom. We specified this struct in the reference code, but that was in the C code. We need to provide an equivalent specification our script can access:

geom = CStruct( "geom", :type_name => "geom_t", :members => [
  Real( "thetamin"),
  Real( "dtheta"),
  Real( "phimin"),
  Real( "dphi"),
  Real( "rmin"),
  Real( "dr"),
  Real( "vparmin"),
  Real( "dvpar"),
  Real( "thetatmp", :dim => [Dim(NTHETA)]),
  Real( "phitmp", :dim => [Dim(NPHI)]),
  Real( "rtmp", :dim => [Dim(NR)])
],
:dim => [Dim(1)])

Now that everything is in place we create one kernel for each function. We start by choosing a name and defining what types of parameters are accepted and what type is returned:

fn_init

p_init = Procedure("fn_init",[f,geom], :return => Int("a"))

Again, the name appears twice: p_init is the name used by our script and fn_init the internal name. The parameters used by the kernel (f, geom) are passed inside a list ([]) as the second argument. Lastly, the return value is given as an Int.

Now that we declared the function we create a kernel object and give it the function declaration:

k_init = CKernel::new
k_init.procedure = p_init

The kernel still lacks the function code. The code is sent to the kernel with get_output.print. We already have the code in variables so let’s send that to get_output.print:

get_output.print macro_ref
get_output.print init_ref

The same process is repeated for the other functions: fn_advec and fn_verif.

fn_advec

p = Procedure("fn_advec",[f0,f1,geom], :return => Int("a"))

k = CKernel::new
k.procedure = p
get_output.print macro_ref
get_output.print code_ref

fn_verif

p_verif = Procedure("fn_verif",[f,geom], :return => Int("a"))

k_verif = CKernel::new
k_verif.procedure = p_verif
get_output.print macro_ref
get_output.print code_verif

We pop the lang we defined before and return the kernels.

  pop_env(:lang)
  return [k_init, k, k_verif]
end

Now that the reference implementation is over. We can start writing our optimized kernel.

We start by creating a new function, generate_fn_advec and defining the defaults for our parameters. Our parameters are:

vector_pragmas
enables or disables the use of #pragma vector
omp_num_threads
number of threads
nontemporal
the use or not of #pragma vector nontemporal
unroll
manual level of loop unrolling

Notice this function receives options as a parameter, allowing the caller to choose a different set of options than those defined below:

def generate_fn_advec(options = {})
  default_options = { :vector_pragmas => false, :omp_num_threads => nil, :nontemporal => true, :unroll => false }
  options = default_options.merge( options )
  p options

We declare what variables this kernel uses. They are:

f0
double *
f1
double *
geom
struct
f0 = Real( "f0", :dim => [Dim(-DECNR,ALLOCSIZER-DECNR-1),Dim(NTHETA),Dim(NPHI),Dim(NVPAR)], :dir => :inout, :align => 64)
f1 = Real( "f1", :dim => [Dim(-DECNR,ALLOCSIZER-DECNR-1),Dim(NTHETA),Dim(NPHI),Dim(NVPAR)], :dir => :out, :align => 64)
geom = CStruct( "geom", :type_name => "geom_t", :members => [
  Real( "thetamin"),
  Real( "dtheta"),
  Real( "phimin"),
  Real( "dphi"),
  Real( "rmin"),
  Real( "dr"),
  Real( "vparmin"),
  Real( "dvpar"),
  Real( "thetatmp", :dim => [Dim(NTHETA)]),
  Real( "phitmp", :dim => [Dim(NPHI)]),
  Real( "rtmp", :dim => [Dim(NR)])
],
:dim => [Dim(1)])

Build #pragma vector. This function allows the use of no vector pragma, vector always, and vector always and nontemporal. What it does is output the pragma lines only if they are in the options. For instance, if options[:vector_pragmas] is false, it won’t output anything. Otherwise, it will output #pragma vector always. If options[:nontemporal] is true as well, it will also output #pragma vector nontemporal.

vector_pragmas = lambda {
  if options[:vector_pragmas] then
    pr Pragma(:vector, "always")
    pr Pragma(:vector, "nontemporal") if options[:nontemporal]
  end
}

Now we create the function using the different combinations of parameters. Notice the use of options[:NAME] to generate different code depending on the parameters being tested.

Notice how here the variables do not specify a direction (e.g. :dir => :in). The reason for that is these variables are local to the function.

p = Procedure("fn_advec",[f0,f1,geom], :return => Int("a")) {
  ivpar = Int(:ivpar)
  iphi = Int(:iphi)
  itheta = Int(:itheta)
  ir = Int(:ir)
  decl ivpar, iphi, itheta, ir
  numres = Real(:numres)
  posx = Real(:posx)
  decl numres, posx
  coefs = (0..3).collect { |i|
    Real("coef#{i}")
  }
  decl *coefs
  pr OpenMP::Parallel( :private => [ir,itheta,iphi,ivpar,numres,posx]+coefs, :num_threads => options[:omp_num_threads] ) {
  pr OpenMP::For( :schedule => "static", :collapse => 3 )
  pr For(ivpar, 0, NVPAR-1) {
    pr For(iphi, 0, NPHI-1) {
      pr For(itheta, 0, NTHETA-1) {
        for1 = For(ir, 0, DECNR-1) {
          pr f0[ir-DECNR,itheta,iphi,ivpar] === f0[ir+NR-DECNR,itheta,iphi,ivpar]
        }
        for2 = For(ir, 0, DECNR-1) {
          pr f0[ir+NR,itheta,iphi,ivpar] === f0[ir,itheta,iphi,ivpar]
        }
        if options[:unroll] then
          pr for1.unroll
          pr for2.unroll
        else
          vector_pragmas.call
          pr for1
          vector_pragmas.call
          pr for2
        end
        vector_pragmas.call
        pr For(ir, 0, NR-1) {
          pr posx === 1.5
          pr f1[ir,itheta,iphi,ivpar] ===
            (-1.0/6.0).to_var * (posx-1.0) * (posx-2.0) * (posx-3.0) * f0[ir-1+0,itheta,iphi,ivpar] +
            (1.0/2.0).to_var  * (posx)     * (posx-2.0) * (posx-3.0) * f0[ir-1+1,itheta,iphi,ivpar] +
            (-1.0/2.0).to_var * (posx)     * (posx-1.0) * (posx-3.0) * f0[ir-1+2,itheta,iphi,ivpar] +
            (1.0/6.0).to_var  * (posx)     * (posx-1.0) * (posx-2.0) * f0[ir-1+3,itheta,iphi,ivpar]
        }
      }
    }
  }
  }
  pr Int(:a) === 0
}

Now that the code is finished, we create a kernel and return it.

 k = CKernel::new
 k.procedure = p
 pr p
 return k
end

We will repeat the kernel 32 times, and start arrays at 0.

nbrepeat = 32

set_array_start(0)

Compile the reference code with OpenMP enabled.

k_init, k_ref, k_verif = generate_reference
puts k_ref
k_init.build(:OPENMP => true)

k_verif.build(:OPENMP => true)

k_ref.build(:OPENMP => true)

Create input data.

fn = ANArray::float(64, ALLOCSIZER*NTHETA*NPHI*NVPAR)
fnp1 = ANArray::float(64, ALLOCSIZER*NTHETA*NPHI*NVPAR)
fnp1_ref = ANArray::float(64, ALLOCSIZER*NTHETA*NPHI*NVPAR)

geo = NArray::float(11)

Execute the reference implementation 32 times and store the results.

k_init.run(fn, geo)
stats = []
nbrepeat.times {
  stats.push k_ref.run(fn, fnp1_ref, geo)[:duration]
}

p stats.sort!

stats = k_verif.run(fnp1_ref, geo)

Specify the values for each of our optimization parameters.

opt_space = OptimizationSpace::new( :vector_pragmas => [ true, false ],
                                    :omp_num_threads => 1..6,
                                    :nontemporal => [true, false],
                                    :unroll => [true, false] )

Run the different implementation versions. They will be run out of order and using all combinations of parameters.

optimizer = BruteForceOptimizer::new(opt_space, :randomize => true)
puts optimizer.optimize { |options|
  k = generate_fn_advec(options)
#  puts k
  k.build(:OPENMP => true)

  stats = []
  nbrepeat.times {
    stats.push k.run(fn, fnp1, geo)[:duration]
  }

Compare against the reference results to be sure we obtained valid results.

diff = (fnp1 - fnp1_ref).abs
puts diff.max
#k_verif.run(fnp1, geo)

Of all the 32 replications, output the one with the lowest execution time for this combination of parameters.

  best = stats.sort.first
  puts best
  best
}

Complete BOAST Code

require 'BOAST'
include BOAST

NR=128
NTHETA=128
NVPAR=32
NPHI=32
DECNR=8
ALLOCSIZER=(2*DECNR+NR)

def generate_reference()
  push_env( :lang => C )
  macro_ref = <<EOF
#ifndef NBREPEAT
#define NBREPEAT 2
#endif
#ifndef NR
#define NR 128
#endif
#ifndef NTHETA
#define NTHETA 128
#endif
#ifndef NVPAR
#define NVPAR 32
#endif
#ifndef NPHI
#define NPHI 32
#endif

#define DECNR 8
#define ALLOCSIZER (2*DECNR+NR)
  
#define FVAL(f,i1,i2,i3,i4) \
 f[DECNR+i1+ALLOCSIZER*(i2+NTHETA*(i3+NPHI*(i4)))]

typedef struct {
  double thetamin, dtheta;
  double phimin, dphi;
  double rmin, dr;
  double vparmin, dvpar;
  double *thetatmp;
  double *phitmp;
  double *rtmp;
} geom_t;
EOF
  code_ref= <<EOF
int fn_advec(double *f0, double *f1, geom_t *geom) {
  int ivpar, iphi, itheta, ir;
  double numres, posx;
  double coef0, coef1, coef2, coef3;

  __assume_aligned(f0, 64);
  __assume_aligned(f1, 64);

#pragma omp parallel private(ir,itheta,iphi,ivpar, \
			     numres,coef0,coef1,coef2,coef3,posx)
#pragma omp for schedule(static) collapse(3)
  for (ivpar=0; ivpar<NVPAR; ivpar++) {
    for (iphi=0; iphi<NPHI; iphi++) {
      for (itheta=0; itheta<NTHETA; itheta++) {

#pragma vector always
#pragma vector nontemporal
	for (ir=0; ir<DECNR; ir++) {
	  FVAL(f0,ir-DECNR,itheta,iphi,ivpar) = FVAL(f0,NR-DECNR+ir,itheta,iphi,ivpar);
	}
#pragma vector always
#pragma vector nontemporal
	for (ir=0; ir<DECNR; ir++) {
	  FVAL(f0,NR+ir,itheta,iphi,ivpar) = FVAL(f0,ir,itheta,iphi,ivpar);
	}

#pragma vector always
#pragma vector nontemporal
	for (ir=0; ir<NR; ir++) {
	  posx = 1.5;

	  FVAL(f1,ir,itheta,iphi,ivpar) = 
	    -1./6. * (posx-1.) * (posx-2.) * (posx-3.) * 
	    FVAL(f0,ir-1+0,itheta,iphi,ivpar) +
	    1./2. * (posx)    * (posx-2.) * (posx-3.) *
	    FVAL(f0,ir-1+1,itheta,iphi,ivpar) + 
	    -1./2. * (posx)    * (posx-1.) * (posx-3.) *
	    FVAL(f0,ir-1+2,itheta,iphi,ivpar) +
	    1./6. * (posx)    * (posx-1.) * (posx-2.) *
	    FVAL(f0,ir-1+3,itheta,iphi,ivpar);
	}
      }
    }
  }

  return 0;

}
EOF
  init_ref = <<EOF
int fn_init(double *f, geom_t *geom) {
  int ivpar, iphi, itheta,ir;
  double rval, thval, pval, vval;
  geom->rtmp = malloc(NR*sizeof(double));
  geom->thetatmp = malloc(NTHETA*sizeof(double));
  geom->phitmp = malloc(NPHI*sizeof(double));
  for (iphi=0; iphi<NPHI; iphi++) geom->phitmp[iphi]=sin( geom->phimin   + iphi  *geom->dphi );
  for (itheta=0; itheta<NTHETA; itheta++) geom->thetatmp[itheta]=sin( geom->thetamin + itheta*geom->dtheta + geom->dtheta*.5);
  for (ir=0; ir<NR; ir++) geom->rtmp[ir] = sin( ir*geom->dr );

#pragma omp parallel for schedule(static) private(ir,itheta,iphi,ivpar,rval,thval,pval,vval)
  for (ivpar=0; ivpar<NVPAR; ivpar++) {
    for (iphi=0; iphi<NPHI; iphi++) {
      for (itheta=0; itheta<NTHETA; itheta++) {
#pragma vector always
#pragma ivdep
	for (ir=0; ir<NR; ir++) {
          rval  = geom->rtmp[ir];
	  thval = geom->thetatmp[itheta];
	  pval  = geom->phitmp[iphi];
          vval  = 1.;
	  FVAL(f,ir,itheta,iphi,ivpar) = rval * thval * pval * vval;
	}
      }
    }
  }
  return 0;
}
EOF
  code_verif = <<EOF
int fn_verif(double *f, geom_t *geom) {
  int ivpar, iphi, itheta, ir;
  int64_t count,lagrange1d.org modulo;
  double rval, thval, pval, vval;
  double numres, exact;
  modulo = NR*NTHETA*NPHI*NVPAR/10;
  for (iphi=0; iphi<NPHI; iphi++) geom->phitmp[iphi]=sin( geom->phimin   + iphi  *geom->dphi );
  for (itheta=0; itheta<NTHETA; itheta++) geom->thetatmp[itheta]=sin( geom->thetamin + itheta*geom->dtheta + geom->dtheta*.5);
  for (ir=0; ir<NR; ir++) geom->rtmp[ir] = sin( ir*geom->dr +.5*geom->dr);

#pragma omp parallel for schedule(static) private(ir,itheta,iphi,ivpar,count,rval,thval,pval,vval, \
						  numres,exact)
  for (ivpar=0; ivpar<NVPAR; ivpar++) {
    for (iphi=0; iphi<NPHI; iphi++) {
      for (itheta=0; itheta<NTHETA; itheta++) {
	for (ir=0; ir<NR; ir++) {
          count=ir+NR*(itheta+NTHETA*(iphi+NPHI*ivpar));
          rval  = geom->rtmp[ir];
	  thval = geom->thetatmp[itheta];
	  pval  = geom->phitmp[iphi];
          vval  = 1.;

          numres = FVAL(f,ir,itheta,iphi,ivpar);
          exact  = rval * thval * pval * vval; 
	    if (!(fabs(numres-exact) < 1.e-4)) {
#pragma omp critical 
	      {
		printf( "ERROR! at %d %d %d %d, %.5e %.5e %.5e\\n",
			ir,itheta,iphi,ivpar,numres,exact,numres-exact );
		exit(2);
	      }
	    } else {
	      if (count%modulo == 0) {
#pragma omp critical 
		{
	//	  printf( "OK %d %d %d %d, %.5e %.5e %.5e\\n",
//			  ir,itheta,iphi,ivpar,numres,exact,numres-exact );
		}
	      }
	    }
	}
      }
    }
  }
  return 0;
}
EOF
  f = Real( "f", :dim => [Dim(ALLOCSIZER),Dim(NTHETA),Dim(NPHI),Dim(NVPAR)], :dir => :out)
  
  f0 = Real( "f0", :dim => [Dim(ALLOCSIZER),Dim(NTHETA),Dim(NPHI),Dim(NVPAR)], :dir => :in)
  f1 = Real( "f1", :dim => [Dim(ALLOCSIZER),Dim(NTHETA),Dim(NPHI),Dim(NVPAR)], :dir => :out)
  geom = CStruct( "geom", :type_name => "geom_t", :members => [
    Real( "thetamin"),
    Real( "dtheta"),
    Real( "phimin"),
    Real( "dphi"),
    Real( "rmin"),
    Real( "dr"),
    Real( "vparmin"),
    Real( "dvpar"),
    Real( "thetatmp", :dim => [Dim(NTHETA)]),
    Real( "phitmp", :dim => [Dim(NPHI)]),
    Real( "rtmp", :dim => [Dim(NR)])
  ],
  :dim => [Dim(1)])
   
  File::open("protolag1d.c") { |f|
    source_ref = f.read
  }
  
  
  p_init = Procedure("fn_init",[f,geom], :return => Int("a"))
  
  k_init = CKernel::new
  k_init.procedure = p_init
  get_output.print macro_ref
  get_output.print init_ref
  
  p = Procedure("fn_advec",[f0,f1,geom], :return => Int("a"))
  
  k = CKernel::new
  k.procedure = p
  get_output.print macro_ref
  get_output.print code_ref
  
  p_verif = Procedure("fn_verif",[f,geom], :return => Int("a"))
  
  k_verif = CKernel::new
  k_verif.procedure = p_verif
  get_output.print macro_ref
  get_output.print code_verif
  pop_env(:lang)
  return [k_init, k, k_verif]
end

def generate_fn_advec(options = {})
  default_options = { :vector_pragmas => false, :omp_num_threads => nil, :nontemporal => true, :unroll => false }
  options = default_options.merge( options )
  p options
  f0 = Real( "f0", :dim => [Dim(-DECNR,ALLOCSIZER-DECNR-1),Dim(NTHETA),Dim(NPHI),Dim(NVPAR)], :dir => :inout, :align => 64)
  f1 = Real( "f1", :dim => [Dim(-DECNR,ALLOCSIZER-DECNR-1),Dim(NTHETA),Dim(NPHI),Dim(NVPAR)], :dir => :out, :align => 64)
  geom = CStruct( "geom", :type_name => "geom_t", :members => [
    Real( "thetamin"),
    Real( "dtheta"),
    Real( "phimin"),
    Real( "dphi"),
    Real( "rmin"),
    Real( "dr"),
    Real( "vparmin"),
    Real( "dvpar"),
    Real( "thetatmp", :dim => [Dim(NTHETA)]),
    Real( "phitmp", :dim => [Dim(NPHI)]),
    Real( "rtmp", :dim => [Dim(NR)])
  ],
  :dim => [Dim(1)])

  vector_pragmas = lambda {
    if options[:vector_pragmas] then
      pr Pragma(:vector, "always")
      pr Pragma(:vector, "nontemporal") if options[:nontemporal]
    end
  }

  p = Procedure("fn_advec",[f0,f1,geom], :return => Int("a")) {
    ivpar = Int(:ivpar)
    iphi = Int(:iphi)
    itheta = Int(:itheta)
    ir = Int(:ir)
    decl ivpar, iphi, itheta, ir
    numres = Real(:numres)
    posx = Real(:posx)
    decl numres, posx
    coefs = (0..3).collect { |i|
      Real("coef#{i}")
    }
    decl *coefs
    pr OpenMP::Parallel( :private => [ir,itheta,iphi,ivpar,numres,posx]+coefs, :num_threads => options[:omp_num_threads] ) {
    pr OpenMP::For( :schedule => "static", :collapse => 3 )
    pr For(ivpar, 0, NVPAR-1) {
      pr For(iphi, 0, NPHI-1) {
        pr For(itheta, 0, NTHETA-1) {
          for1 = For(ir, 0, DECNR-1) {
            pr f0[ir-DECNR,itheta,iphi,ivpar] === f0[ir+NR-DECNR,itheta,iphi,ivpar]
          }
          for2 = For(ir, 0, DECNR-1) {
            pr f0[ir+NR,itheta,iphi,ivpar] === f0[ir,itheta,iphi,ivpar]
          }
          if options[:unroll] then
            pr for1.unroll
            pr for2.unroll
          else
            vector_pragmas.call
            pr for1
            vector_pragmas.call
            pr for2
          end
          vector_pragmas.call
          pr For(ir, 0, NR-1) {
            pr posx === 1.5
            pr f1[ir,itheta,iphi,ivpar] ===
              (-1.0/6.0).to_var * (posx-1.0) * (posx-2.0) * (posx-3.0) * f0[ir-1+0,itheta,iphi,ivpar] +
              (1.0/2.0).to_var  * (posx)     * (posx-2.0) * (posx-3.0) * f0[ir-1+1,itheta,iphi,ivpar] +
              (-1.0/2.0).to_var * (posx)     * (posx-1.0) * (posx-3.0) * f0[ir-1+2,itheta,iphi,ivpar] +
              (1.0/6.0).to_var  * (posx)     * (posx-1.0) * (posx-2.0) * f0[ir-1+3,itheta,iphi,ivpar]
          }
        }
      }
    }
    }
    pr Int(:a) === 0
  }
  k = CKernel::new
  k.procedure = p
  pr p
  return k
 end

nbrepeat = 32

set_array_start(0)

k_init, k_ref, k_verif = generate_reference
puts k_ref
k_init.build(:OPENMP => true)

k_verif.build(:OPENMP => true)

k_ref.build(:OPENMP => true)

fn = ANArray::float(64, ALLOCSIZER*NTHETA*NPHI*NVPAR)
fnp1 = ANArray::float(64, ALLOCSIZER*NTHETA*NPHI*NVPAR)
fnp1_ref = ANArray::float(64, ALLOCSIZER*NTHETA*NPHI*NVPAR)

geo = NArray::float(11)

k_init.run(fn, geo)
stats = []
nbrepeat.times {
  stats.push k_ref.run(fn, fnp1_ref, geo)[:duration]
}

p stats.sort!

stats = k_verif.run(fnp1_ref, geo)

opt_space = OptimizationSpace::new( :vector_pragmas => [ true, false ],
                                    :omp_num_threads => 1..6,
                                    :nontemporal => [true, false],
                                    :unroll => [true, false] )

optimizer = BruteForceOptimizer::new(opt_space, :randomize => true)
puts optimizer.optimize { |options|
  k = generate_fn_advec(options)
#  puts k
  k.build(:OPENMP => true)

  stats = []
  nbrepeat.times {
    stats.push k.run(fn, fnp1, geo)[:duration]
  }
  diff = (fnp1 - fnp1_ref).abs
  puts diff.max
  #k_verif.run(fnp1, geo)

  best = stats.sort.first
  puts best
  best
}

Experiments

node007

Machine

  • node007 of mesocentre Aix-Marseille Université
  • Westmere

[bulldog@node008 ~]$ lscpu 
Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                24
On-line CPU(s) list:   0-11
Off-line CPU(s) list:  12-23
Thread(s) per core:    1
Core(s) per socket:    6
Socket(s):             2
NUMA node(s):          2
Vendor ID:             GenuineIntel
CPU family:            6
Model:                 44
Stepping:              2
CPU MHz:               3066.815
BogoMIPS:              6133.14
Virtualization:        VT-x
L1d cache:             32K
L1i cache:             32K
L2 cache:              256K
L3 cache:              12288K
NUMA node0 CPU(s):     0-5
NUMA node1 CPU(s):     6-11

Results

  • NUMA

Let’s verify the effect of memory placement on the kernel:

As the figure shows, for this kernel interleave is the best of the tested NUMA policies. All figures below use this policy.

  • Speedup

There is a small speedup up to 8 threads.

  • Other Parameters

parapluie

Machine

parapluie of Grid5000

Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                24
On-line CPU(s) list:   0-23
Thread(s) per core:    1
Core(s) per socket:    12
Socket(s):             2
NUMA node(s):          4
Vendor ID:             AuthenticAMD
CPU family:            16
Model:                 9
Stepping:              1
CPU MHz:               1700.000
BogoMIPS:              3400.16
Virtualization:        AMD-V
L1d cache:             64K
L1i cache:             64K
L2 cache:              512K
L3 cache:              5118K
NUMA node0 CPU(s):     0-5
NUMA node1 CPU(s):     6-11
NUMA node2 CPU(s):     18-23
NUMA node3 CPU(s):     12-17

Results

  • NUMA

  • Speedup-

  • Other parameters

octodroid-1

Machine

Node of the octodroid cluster on Mont-Blanc

Architecture:          armv7l
Byte Order:            Little Endian
CPU(s):                8
On-line CPU(s) list:   0-7
Thread(s) per core:    1
Core(s) per socket:    4
Socket(s):             2
Model name:            ARMv7 Processor rev 3 (v7l)
CPU max MHz:           1400.0000
CPU min MHz:           200.0000

Results

  • Speedup for big and little cores

  • Speedup

  • Other parameters

Energy Consumption

Machine

Laptop

Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                8
On-line CPU(s) list:   0-7
Thread(s) per core:    2
Core(s) per socket:    4
Socket(s):             1
NUMA node(s):          1
Vendor ID:             GenuineIntel
CPU family:            6
Model:                 58
Model name:            Intel(R) Core(TM) i7-3720QM CPU @ 2.60GHz
Stepping:              9
CPU MHz:               1203.109
CPU max MHz:           3600.0000
CPU min MHz:           1200.0000
BogoMIPS:              5185.09
Virtualization:        VT-x
L1d cache:             32K
L1i cache:             32K
L2 cache:              256K
L3 cache:              6144K
NUMA node0 CPU(s):     0-7
Flags:                 fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm epb tpr_shadow vnmi flexpriority ept vpid fsgsbase smep erms xsaveopt dtherm ida arat pln pts

Results

Average execution time and energy for all combinations of parameters.

Execution time and energy consumption for the three fastest and three most efficient kernels: