Releases: Nixtla/neuralforecast
Releases · Nixtla/neuralforecast
v3.0.0
New features
- FEAT: TimeXer @marcopeix (#1267)
- All losses compatible with all types of models (e.g. univariate/multivariate, direct/recurrent) OR appropriate protection added.
- DistributionLoss now supports the use of
quantiles
inpredict
, allowing for easy quantile retrieval for allDistributionLosses
. - Mixture losses (GMM, PMM and NBMM) now support learned weights for weighted mixture distribution outputs.
- Mixture losses now support the use of
quantiles
inpredict
, allowing for easy quantile retrieval. - Improved stability of
ISQF
by adding softplus protection around some parameters instead of using.abs
. - Unified API for any quantile or any confidence level during predict for both point and distribution losses.
Enhancements
- [DOCS] Docstrings @elephaint (#1279)
- FIX: Minor bug fix in TFT and a nicer error message for fitting with the wrong val_size @marcopeix (#1275)
- [FIX] Adds bfloat16 support @elephaint (#1265)
- Recurrent models can now produce forecasts recursively or directly.
- IQLoss now gives monotonic quantiles
- MASE loss now works
Breaking Changes
- [FIX] Unify API @elephaint (#1023)
- RMoK uses the
revin_affine
parameter instead ofrevine_affine
. This was a typo in the previous version. - All models now inherit the
BaseModel
class. This changes how we implement new models in neuralforecast. - Recurrent models now require an
input_size
parameter. TCN
andDRNN
are now window models, not recurrent models- We cannot load a recurrent model from a previous version to v3.0.0
Bug Fixes
- [FIX] Multivariate models give error when predicting when n_series > batch_size @elephaint (#1276)
- [FIX]: Insample predictions with series of varying lengths @marcopeix (#1246)
Documentation
- [DOCS] Update documentation @elephaint (#1274)
- [DOCS] Add example of modifying the default configure_optimizers() behavior (use of ReduceLROnPlateau scheduler) @JQGoh (#1015)
v2.0.1
Enhancements
- FEAT: Custom RNN layers for TFT @Yanam24 (#1230)
- FEAT: Add the horizon weighing to the distribution losses @mwamsojo (#1233)
Documentation
- DOCS: Add citation note @elephaint (#1244)
- fix: azul @AzulGarza (#1245)
v2.0.0
v1.7.7
v1.7.6
New Features
- [FEAT]: Support providing DataLoader arguments to optimize GPU usage @jasminerienecker (#1186)
- [FEAT]: Set activation function in GRN of TFT @marcopeix (#1175)
- [FEAT]: Conformal Predictions in NeuralForecast @JQGoh (#1171)
Bug Fixes
- [FIX]: Ability load models saved using versions before 1.7 @tylernisonoff (#1207)
- [FIX]: Conformal prediction issues @elephaint (#1179)
- [FIX]: Feature importance when using only hist_exog in TFT fails @elephaint (#1174)
- [FIX]: Remove unused output layer NBEATSx @elephaint (#1168)
- [FIX]: Fix Tweedie loss @elephaint (#1164)
- [FIX]: MLPMultivariate incorrect static_exog parsing @elephaint (#1170)
- [FIX]: Deprecate activation functions for GRU @marcopeix (#1198)
Documentation
- [DOC]: Tutorial on cross-validation @marcopeix (#1176)
- [DOC]: Build docs on release only @elephaint (#1183)
v1.7.5
New Features
- [FEAT]: Move RevIN class to common module @JQGoh (#1083)
- [FEAT]: Add RMoK @marcopeix (#1148)
- FEAT: TimeLLM is faster and supports more LLMs @ive2go (#1139)
- [FEAT]: TFT-Interpretability @amirouyanis (#1104)
- [FEAT]: ]Add support for the local file dataloader with the Automodels @jasminerienecker (#1095)
Bug Fixes
- [FIX] CV Refit works with non-standard column names @elephaint (#1149)
- [FIX]: replace self.pred_len with self.h @carusyte (#1129)
- [FIX]: only define static encoder when applicable in TFT @jmoralez (#1114)
- [FIX]: remove cast to float in scalers @jmoralez (#1115)
- [FIX]: timemixer shapes mismatch and doc update @carusyte @marcopeix (#1138)
Dependencies
- Bump pypa/gh-action-pypi-publish from 1.10.0 to 1.10.1 in the ci-dependencies group @dependabot (#1146)
- Bump the ci-dependencies group with 2 updates @dependabot (#1135)
v1.7.4
New Features
- [FEAT] - Add KAN @marcopeix (#999)
- [FEAT] - Add TimeMixer @marcopeix (#1071)
- [FEAT] - Add support for datasets that can't fit in memory @jasminerienecker (#1049)
Bug Fixes
- [FIX] ignore pytorch lightning's PossibleUserWarning @fabianbergermann (#1081)
- [FIX] bug in the NBEATSx exogenous basis stack @jasminerienecker (#1072)
- [FIX] Fix nbdev_version in test & environment @elephaint (#1089)
Documentation
- [DOCS] add tutorial for large dataset DataLoader @jasminerienecker (#1074)
- [DOCS] Restructure documentation @elephaint (#1063)
- [DOCS] Fix examples @elephaint (#1092)
- [DOCS] Fix tables @elephaint (#1090)
- [DOCS] Fix docs layout issues @elephaint (#1085)
- [DOCS] Fix issues @elephaint (#1082)
Dependencies
- Bump actions/setup-python from 5.1.0 to 5.1.1 in the ci-dependencies group @dependabot (#1067)
- use commit hash in actions and add dependabot updates @jmoralez (#1066)
v1.7.3
New Features
- [FEAT] ISQF @elephaint (#1019)
- [FEAT] - Add SOFTS model @marcopeix (#1024)
- [FEAT] Add option to support user defined learning rate scheduler for NeuralForecast Models @JQGoh (#998)
- [FEAT] Implicit Quantile Networks @elephaint (#1007)
Bug Fixes
- use assign argument if available in nn.Module.load_state_dict @jmoralez (#1032)
- update min_size in TimeSeriesDataset.append @jmoralez (#1033)
- fix num_tasks in spark integration @jmoralez (#1028)
Documentation
- fix: add tsmixer tutorial to sidebar @AzulGarza (#978)
- Update models in the README @candalfigomoro (#946)
Enhancement
v1.7.2
New Features
- [FEAT] DeepNPTS model @elephaint (#990)
- [FEAT] TiDE model @elephaint (#971)
Bug Fixes
- [FIX] Refit after validation boolean @elephaint (#991)
- fix cross_validation results with uneven windows @jmoralez (#989)
- [FIX] fix wrong import doc PatchTST @elephaint (#967)
- [FIX] raise exception nbeats h=1 with stacks @elephaint (#966)
Enhancement
- reduce default warnings @jmoralez (#974)
- Create CODE_OF_CONDUCT.md @tracykteal (#972)
v1.7.1
New Features
- multi-node distributed training with spark @jmoralez (#935)
- [FEAT] Add BiTCN model @elephaint (#958)
- [FEAT] - Add iTransformer to neuralforecast @marcopeix (#944)
- [FEAT] Add MLPMultivariate model @elephaint (#938)
Bug Fixes
- [FIX] Fixes default settings of BiTCN @elephaint (#961)
- [FIX] HINT not producing coherent forecasts @elephaint (#964)
- [FIX] Fixes 948 multivariate predict/val issues when n_series > 1024 @elephaint (#962)
- handle exogenous variables of TFT in parent class @jmoralez (#959)
- fix early stopping in ray auto models @jmoralez (#953)
- fix cross_validation when the id is the index @jmoralez (#951)
Documentation
- add MLflow logging example @cargecla1 (#892)