Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dev add bitwise shift op #9860

Open
wants to merge 63 commits into
base: master
Choose a base branch
from
Open

Dev add bitwise shift op #9860

wants to merge 63 commits into from

Conversation

marigoold
Copy link
Contributor

@marigoold marigoold commented Feb 13, 2023

image
image

@marigoold marigoold changed the base branch from master to dev_add_bitwise_op February 13, 2023 08:44
Base automatically changed from dev_add_bitwise_op to master February 13, 2023 09:54
@github-actions
Copy link
Contributor

github-actions bot commented Mar 7, 2023

View latest API docs preview at: https://staging.oneflow.info/docs/Oneflow-Inc/oneflow/pr/9860/

@github-actions
Copy link
Contributor

github-actions bot commented Mar 7, 2023

Speed stats:
GPU Name: GeForce GTX 1080 

❌ OneFlow resnet50 time: 141.5ms (= 14153.2ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 145.0ms (= 14501.3ms / 100, input_shape=[16, 3, 224, 224])
❌ Relative speed: 1.02 (= 145.0ms / 141.5ms)

OneFlow resnet50 time: 84.2ms (= 8425.0ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 87.9ms (= 8788.3ms / 100, input_shape=[8, 3, 224, 224])
✔️ Relative speed: 1.04 (= 87.9ms / 84.2ms)

OneFlow resnet50 time: 51.2ms (= 10237.7ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 59.0ms (= 11803.2ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 1.15 (= 59.0ms / 51.2ms)

OneFlow resnet50 time: 33.8ms (= 6753.6ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 45.6ms (= 9127.5ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.35 (= 45.6ms / 33.8ms)

OneFlow resnet50 time: 25.3ms (= 5063.3ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 37.7ms (= 7544.8ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 1.49 (= 37.7ms / 25.3ms)

OneFlow swin dataloader time: 0.235s (= 47.085s / 200, num_workers=1)
PyTorch swin dataloader time: 0.150s (= 29.954s / 200, num_workers=1)
Relative speed: 0.636 (= 0.150s / 0.235s)

OneFlow swin dataloader time: 0.068s (= 13.681s / 200, num_workers=4)
PyTorch swin dataloader time: 0.042s (= 8.301s / 200, num_workers=4)
Relative speed: 0.607 (= 0.042s / 0.068s)

OneFlow swin dataloader time: 0.047s (= 9.379s / 200, num_workers=8)
PyTorch swin dataloader time: 0.022s (= 4.425s / 200, num_workers=8)
Relative speed: 0.472 (= 0.022s / 0.047s)

❌ OneFlow resnet50 time: 155.6ms (= 15564.9ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 166.4ms (= 16644.8ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
❌ Relative speed: 1.07 (= 166.4ms / 155.6ms)

OneFlow resnet50 time: 95.2ms (= 9519.5ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 104.6ms (= 10457.2ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.10 (= 104.6ms / 95.2ms)

OneFlow resnet50 time: 61.9ms (= 12385.9ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 83.6ms (= 16726.9ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.35 (= 83.6ms / 61.9ms)

OneFlow resnet50 time: 44.1ms (= 8826.5ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 70.5ms (= 14107.9ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.60 (= 70.5ms / 44.1ms)

OneFlow resnet50 time: 37.5ms (= 7501.1ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 66.6ms (= 13325.7ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.78 (= 66.6ms / 37.5ms)

@github-actions
Copy link
Contributor

github-actions bot commented Mar 7, 2023

View latest API docs preview at: https://staging.oneflow.info/docs/Oneflow-Inc/oneflow/pr/9860/

@github-actions
Copy link
Contributor

github-actions bot commented Mar 7, 2023

Speed stats:
GPU Name: GeForce GTX 1080 

❌ OneFlow resnet50 time: 141.2ms (= 14116.4ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 144.6ms (= 14459.8ms / 100, input_shape=[16, 3, 224, 224])
❌ Relative speed: 1.02 (= 144.6ms / 141.2ms)

OneFlow resnet50 time: 82.8ms (= 8276.3ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 89.0ms (= 8898.3ms / 100, input_shape=[8, 3, 224, 224])
✔️ Relative speed: 1.08 (= 89.0ms / 82.8ms)

OneFlow resnet50 time: 51.1ms (= 10223.3ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 59.8ms (= 11956.5ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 1.17 (= 59.8ms / 51.1ms)

OneFlow resnet50 time: 33.7ms (= 6730.3ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 42.8ms (= 8564.9ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.27 (= 42.8ms / 33.7ms)

OneFlow resnet50 time: 25.8ms (= 5153.2ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 38.1ms (= 7625.7ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 1.48 (= 38.1ms / 25.8ms)

OneFlow swin dataloader time: 0.236s (= 47.214s / 200, num_workers=1)
PyTorch swin dataloader time: 0.150s (= 30.072s / 200, num_workers=1)
Relative speed: 0.637 (= 0.150s / 0.236s)

OneFlow swin dataloader time: 0.068s (= 13.514s / 200, num_workers=4)
PyTorch swin dataloader time: 0.042s (= 8.322s / 200, num_workers=4)
Relative speed: 0.616 (= 0.042s / 0.068s)

OneFlow swin dataloader time: 0.038s (= 7.503s / 200, num_workers=8)
PyTorch swin dataloader time: 0.023s (= 4.595s / 200, num_workers=8)
Relative speed: 0.612 (= 0.023s / 0.038s)

❌ OneFlow resnet50 time: 153.8ms (= 15380.5ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 165.5ms (= 16551.2ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
❌ Relative speed: 1.08 (= 165.5ms / 153.8ms)

OneFlow resnet50 time: 93.9ms (= 9394.5ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 104.2ms (= 10416.1ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.11 (= 104.2ms / 93.9ms)

OneFlow resnet50 time: 61.2ms (= 12249.2ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 83.9ms (= 16774.8ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.37 (= 83.9ms / 61.2ms)

OneFlow resnet50 time: 43.1ms (= 8614.4ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 76.5ms (= 15308.4ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.78 (= 76.5ms / 43.1ms)

OneFlow resnet50 time: 35.8ms (= 7162.0ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 68.4ms (= 13687.9ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.91 (= 68.4ms / 35.8ms)

@github-actions
Copy link
Contributor

github-actions bot commented Mar 8, 2023

Speed stats:
GPU Name: GeForce GTX 1080 

❌ OneFlow resnet50 time: 141.1ms (= 14108.5ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 145.1ms (= 14505.2ms / 100, input_shape=[16, 3, 224, 224])
❌ Relative speed: 1.03 (= 145.1ms / 141.1ms)

OneFlow resnet50 time: 81.4ms (= 8138.0ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 85.5ms (= 8545.8ms / 100, input_shape=[8, 3, 224, 224])
✔️ Relative speed: 1.05 (= 85.5ms / 81.4ms)

OneFlow resnet50 time: 50.4ms (= 10085.5ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 58.1ms (= 11610.9ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 1.15 (= 58.1ms / 50.4ms)

OneFlow resnet50 time: 34.1ms (= 6828.6ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 46.3ms (= 9268.7ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.36 (= 46.3ms / 34.1ms)

OneFlow resnet50 time: 25.7ms (= 5137.3ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 35.7ms (= 7145.1ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 1.39 (= 35.7ms / 25.7ms)

OneFlow swin dataloader time: 0.241s (= 48.146s / 200, num_workers=1)
PyTorch swin dataloader time: 0.153s (= 30.580s / 200, num_workers=1)
Relative speed: 0.635 (= 0.153s / 0.241s)

OneFlow swin dataloader time: 0.065s (= 12.911s / 200, num_workers=4)
PyTorch swin dataloader time: 0.041s (= 8.213s / 200, num_workers=4)
Relative speed: 0.636 (= 0.041s / 0.065s)

OneFlow swin dataloader time: 0.046s (= 9.140s / 200, num_workers=8)
PyTorch swin dataloader time: 0.022s (= 4.409s / 200, num_workers=8)
Relative speed: 0.482 (= 0.022s / 0.046s)

❌ OneFlow resnet50 time: 152.9ms (= 15287.0ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 167.6ms (= 16763.0ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
❌ Relative speed: 1.10 (= 167.6ms / 152.9ms)

OneFlow resnet50 time: 92.6ms (= 9258.0ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 108.3ms (= 10832.3ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.17 (= 108.3ms / 92.6ms)

OneFlow resnet50 time: 60.3ms (= 12059.9ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 85.3ms (= 17059.0ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.41 (= 85.3ms / 60.3ms)

OneFlow resnet50 time: 42.5ms (= 8507.8ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 73.9ms (= 14789.2ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.74 (= 73.9ms / 42.5ms)

OneFlow resnet50 time: 36.3ms (= 7266.9ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 72.0ms (= 14395.5ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.98 (= 72.0ms / 36.3ms)

@github-actions
Copy link
Contributor

github-actions bot commented Mar 8, 2023

View latest API docs preview at: https://staging.oneflow.info/docs/Oneflow-Inc/oneflow/pr/9860/

@github-actions
Copy link
Contributor

Speed stats:
GPU Name: GeForce GTX 1080 

❌ OneFlow resnet50 time: 140.9ms (= 14089.4ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 143.1ms (= 14308.0ms / 100, input_shape=[16, 3, 224, 224])
❌ Relative speed: 1.02 (= 143.1ms / 140.9ms)

OneFlow resnet50 time: 80.9ms (= 8085.2ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 85.6ms (= 8559.4ms / 100, input_shape=[8, 3, 224, 224])
✔️ Relative speed: 1.06 (= 85.6ms / 80.9ms)

OneFlow resnet50 time: 50.1ms (= 10025.3ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 61.0ms (= 12209.6ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 1.22 (= 61.0ms / 50.1ms)

OneFlow resnet50 time: 32.9ms (= 6588.0ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 40.5ms (= 8103.9ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.23 (= 40.5ms / 32.9ms)

OneFlow resnet50 time: 25.3ms (= 5063.8ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 37.2ms (= 7433.1ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 1.47 (= 37.2ms / 25.3ms)

OneFlow swin dataloader time: 0.240s (= 47.917s / 200, num_workers=1)
PyTorch swin dataloader time: 0.150s (= 29.910s / 200, num_workers=1)
Relative speed: 0.624 (= 0.150s / 0.240s)

OneFlow swin dataloader time: 0.069s (= 13.881s / 200, num_workers=4)
PyTorch swin dataloader time: 0.041s (= 8.188s / 200, num_workers=4)
Relative speed: 0.590 (= 0.041s / 0.069s)

OneFlow swin dataloader time: 0.045s (= 9.015s / 200, num_workers=8)
PyTorch swin dataloader time: 0.022s (= 4.494s / 200, num_workers=8)
Relative speed: 0.499 (= 0.022s / 0.045s)

❌ OneFlow resnet50 time: 152.5ms (= 15252.5ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 164.9ms (= 16489.3ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
❌ Relative speed: 1.08 (= 164.9ms / 152.5ms)

OneFlow resnet50 time: 91.5ms (= 9154.9ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 101.5ms (= 10145.7ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.11 (= 101.5ms / 91.5ms)

OneFlow resnet50 time: 60.3ms (= 12051.4ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 79.5ms (= 15892.6ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.32 (= 79.5ms / 60.3ms)

OneFlow resnet50 time: 41.9ms (= 8388.6ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 82.3ms (= 16454.1ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.96 (= 82.3ms / 41.9ms)

OneFlow resnet50 time: 36.8ms (= 7362.0ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 77.8ms (= 15555.1ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 2.11 (= 77.8ms / 36.8ms)

@github-actions
Copy link
Contributor

View latest API docs preview at: https://staging.oneflow.info/docs/Oneflow-Inc/oneflow/pr/9860/

@github-actions
Copy link
Contributor

github-actions bot commented Aug 7, 2023

Speed stats:

@github-actions
Copy link
Contributor

github-actions bot commented Aug 9, 2023

CI failed when running job: cpu-module. PR label automerge has been removed

@github-actions github-actions bot removed the automerge label Aug 9, 2023
@github-actions
Copy link
Contributor

github-actions bot commented Aug 9, 2023

Speed stats:

@github-actions
Copy link
Contributor

github-actions bot commented Aug 9, 2023

Speed stats:

@github-actions
Copy link
Contributor

github-actions bot commented Aug 9, 2023

View latest API docs preview at: https://staging.oneflow.info/docs/Oneflow-Inc/oneflow/pr/9860/

@github-actions
Copy link
Contributor

github-actions bot commented Aug 9, 2023

Speed stats:
GPU Name: NVIDIA GeForce RTX 3080 Ti 

❌ OneFlow resnet50 time: 43.9ms (= 4393.3ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 61.1ms (= 6111.9ms / 100, input_shape=[16, 3, 224, 224])
✔️ Relative speed: 1.39 (= 61.1ms / 43.9ms)

OneFlow resnet50 time: 26.1ms (= 2605.4ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 37.6ms (= 3763.0ms / 100, input_shape=[8, 3, 224, 224])
✔️ Relative speed: 1.44 (= 37.6ms / 26.1ms)

OneFlow resnet50 time: 18.6ms (= 3724.5ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 35.4ms (= 7074.1ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 1.90 (= 35.4ms / 18.6ms)

OneFlow resnet50 time: 19.1ms (= 3828.9ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 31.4ms (= 6274.3ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.64 (= 31.4ms / 19.1ms)

OneFlow resnet50 time: 18.2ms (= 3649.8ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 30.0ms (= 5991.5ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 1.64 (= 30.0ms / 18.2ms)

OneFlow swin dataloader time: 0.201s (= 40.166s / 200, num_workers=1)
PyTorch swin dataloader time: 0.129s (= 25.861s / 200, num_workers=1)
Relative speed: 0.644 (= 0.129s / 0.201s)

OneFlow swin dataloader time: 0.054s (= 10.850s / 200, num_workers=4)
PyTorch swin dataloader time: 0.033s (= 6.527s / 200, num_workers=4)
Relative speed: 0.602 (= 0.033s / 0.054s)

OneFlow swin dataloader time: 0.030s (= 6.050s / 200, num_workers=8)
PyTorch swin dataloader time: 0.017s (= 3.365s / 200, num_workers=8)
Relative speed: 0.556 (= 0.017s / 0.030s)

❌ OneFlow resnet50 time: 47.5ms (= 4748.9ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 64.1ms (= 6407.0ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.35 (= 64.1ms / 47.5ms)

OneFlow resnet50 time: 31.2ms (= 3115.8ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 43.8ms (= 4380.4ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.41 (= 43.8ms / 31.2ms)

OneFlow resnet50 time: 24.2ms (= 4846.2ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 42.7ms (= 8549.4ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.76 (= 42.7ms / 24.2ms)

OneFlow resnet50 time: 23.0ms (= 4601.0ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 36.2ms (= 7232.2ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.57 (= 36.2ms / 23.0ms)

OneFlow resnet50 time: 19.0ms (= 3798.5ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 34.0ms (= 6796.4ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.79 (= 34.0ms / 19.0ms)

@github-actions
Copy link
Contributor

View latest API docs preview at: https://staging.oneflow.info/docs/Oneflow-Inc/oneflow/pr/9860/

@github-actions
Copy link
Contributor

Speed stats:
GPU Name: NVIDIA GeForce RTX 3080 Ti 

❌ OneFlow resnet50 time: 43.5ms (= 4348.2ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 61.3ms (= 6128.1ms / 100, input_shape=[16, 3, 224, 224])
✔️ Relative speed: 1.41 (= 61.3ms / 43.5ms)

OneFlow resnet50 time: 26.0ms (= 2600.0ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 38.7ms (= 3873.1ms / 100, input_shape=[8, 3, 224, 224])
✔️ Relative speed: 1.49 (= 38.7ms / 26.0ms)

OneFlow resnet50 time: 19.9ms (= 3973.4ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 35.1ms (= 7026.8ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 1.77 (= 35.1ms / 19.9ms)

OneFlow resnet50 time: 17.4ms (= 3473.2ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 32.3ms (= 6462.4ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.86 (= 32.3ms / 17.4ms)

OneFlow resnet50 time: 17.4ms (= 3484.4ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 29.6ms (= 5914.2ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 1.70 (= 29.6ms / 17.4ms)

OneFlow swin dataloader time: 0.200s (= 40.037s / 200, num_workers=1)
PyTorch swin dataloader time: 0.130s (= 25.905s / 200, num_workers=1)
Relative speed: 0.647 (= 0.130s / 0.200s)

OneFlow swin dataloader time: 0.056s (= 11.282s / 200, num_workers=4)
PyTorch swin dataloader time: 0.032s (= 6.492s / 200, num_workers=4)
Relative speed: 0.575 (= 0.032s / 0.056s)

OneFlow swin dataloader time: 0.032s (= 6.339s / 200, num_workers=8)
PyTorch swin dataloader time: 0.016s (= 3.293s / 200, num_workers=8)
Relative speed: 0.519 (= 0.016s / 0.032s)

❌ OneFlow resnet50 time: 47.5ms (= 4751.9ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 65.8ms (= 6576.3ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.38 (= 65.8ms / 47.5ms)

OneFlow resnet50 time: 30.6ms (= 3061.5ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 43.5ms (= 4351.5ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.42 (= 43.5ms / 30.6ms)

OneFlow resnet50 time: 24.0ms (= 4801.2ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 40.5ms (= 8094.3ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.69 (= 40.5ms / 24.0ms)

OneFlow resnet50 time: 22.1ms (= 4426.6ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 36.7ms (= 7340.0ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.66 (= 36.7ms / 22.1ms)

OneFlow resnet50 time: 20.7ms (= 4132.5ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 34.1ms (= 6813.2ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.65 (= 34.1ms / 20.7ms)

@github-actions
Copy link
Contributor

github-actions bot commented Sep 5, 2023

@github-actions
Copy link
Contributor

github-actions bot commented Sep 5, 2023

Speed stats:
GPU Name: NVIDIA GeForce RTX 3080 Ti 

❌ OneFlow resnet50 time: 43.7ms (= 4366.7ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 61.8ms (= 6176.7ms / 100, input_shape=[16, 3, 224, 224])
✔️ Relative speed: 1.41 (= 61.8ms / 43.7ms)

OneFlow resnet50 time: 26.0ms (= 2603.0ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 37.9ms (= 3791.3ms / 100, input_shape=[8, 3, 224, 224])
✔️ Relative speed: 1.46 (= 37.9ms / 26.0ms)

OneFlow resnet50 time: 20.5ms (= 4109.2ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 36.1ms (= 7219.4ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 1.76 (= 36.1ms / 20.5ms)

OneFlow resnet50 time: 18.5ms (= 3709.2ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 32.5ms (= 6501.4ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.75 (= 32.5ms / 18.5ms)

OneFlow resnet50 time: 17.9ms (= 3584.3ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 29.7ms (= 5930.1ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 1.65 (= 29.7ms / 17.9ms)

OneFlow swin dataloader time: 0.201s (= 40.263s / 200, num_workers=1)
PyTorch swin dataloader time: 0.130s (= 25.972s / 200, num_workers=1)
Relative speed: 0.645 (= 0.130s / 0.201s)

OneFlow swin dataloader time: 0.055s (= 11.065s / 200, num_workers=4)
PyTorch swin dataloader time: 0.033s (= 6.528s / 200, num_workers=4)
Relative speed: 0.590 (= 0.033s / 0.055s)

OneFlow swin dataloader time: 0.030s (= 5.941s / 200, num_workers=8)
PyTorch swin dataloader time: 0.017s (= 3.310s / 200, num_workers=8)
Relative speed: 0.557 (= 0.017s / 0.030s)

❌ OneFlow resnet50 time: 47.5ms (= 4747.1ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 63.8ms (= 6383.8ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.34 (= 63.8ms / 47.5ms)

OneFlow resnet50 time: 30.9ms (= 3092.5ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 43.3ms (= 4328.0ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.40 (= 43.3ms / 30.9ms)

OneFlow resnet50 time: 24.0ms (= 4808.9ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 42.2ms (= 8432.5ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.75 (= 42.2ms / 24.0ms)

OneFlow resnet50 time: 22.1ms (= 4428.0ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 36.6ms (= 7323.8ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.65 (= 36.6ms / 22.1ms)

OneFlow resnet50 time: 21.2ms (= 4242.6ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 34.0ms (= 6790.9ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.60 (= 34.0ms / 21.2ms)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants