Skip to content

Working code to implement RAG for question answering

License

Notifications You must be signed in to change notification settings

Oxen-AI/rag-dive

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

rag-dive

Working code to implement RAG for Question Answering on the SQuAD dataset.

This is the code that goes along with our Practical ML Dive into RAG.

Generate context data

oxen download ox/SQuAD dev.csv
python generate_context.py dev.csv dev_contexts.jsonl

Compute embeddings

TODO: take in CLI args

python compute_embeddings.py

Download embeddings from Oxen

oxen download oxbot/SQuAD-Dev-Embed-4 dev_contexts_embeddings.parquet

Setup Chroma

https://docs.trychroma.com/troubleshooting#sqlite

pip install chromadb==0.4.3
vim ~/.venv_rag/lib/python3.11/site-packages/chromadb/__init__.py

Add these few lines...

__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
import chromadb
chroma_client = chromadb.Client()

collection = chroma_client.create_collection(name="squad_embeddings")

Insert all the embeddings into chroma.

TODO: Make cli params work

python index_into_chroma.py -i embeddings.parquet -o chroma.db

Compute Recall

Figure out how well the embeddings retrieval system works

TODO: Take in N as CLI param

python compute_recall.py ~/Datasets/Not-In-Context/squad_dev.jsonl chroma-dev.db results.jsonl

Compute Precision

Figure out how well we can extract the answer from the context

python compute_precision.py -m meta-llama/Llama-2-7b-chat-hf -d ~/Datasets/SQuAD-Context/experiments/dev-recall-3.jsonl -o ~/Datasets/SQuAD-Context/experiments/dev-llama-recall-3-precision-3-shot.jsonl -n 3

About

Working code to implement RAG for question answering

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published