Skip to content

Commit

Permalink
2-coherence of truncation, newer Agda version, etc. (#9)
Browse files Browse the repository at this point in the history
* first commit

* adding basic A-homotopy operations

* adding truncation functor on coslices

* finished 2-coherence proof

* update Dockerfile

* update to Agda 2.6.4.3

* define ptd homotopy via == instead of =-=

* new name for helper function

* fix function name
  • Loading branch information
PHart3 authored Dec 16, 2024
1 parent 60a834c commit 4473169
Show file tree
Hide file tree
Showing 18 changed files with 507 additions and 108 deletions.
60 changes: 57 additions & 3 deletions Colimit-code/Aux/Coslice.agda
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,9 @@ infixr 40 <_>_∘_

infixr 30 [_,_]_∼_
[_,_]_∼_ : {i j k} (A : Type j) (X : Coslice i j A) {Y : Coslice k j A}
< A > X *→ Y < A > X *→ Y Type (lmax (lmax i k) j)
< A > X *→ Y < A > X *→ Y Type (lmax (lmax i k) j)
[ A , *[ X , f ] ] ( h₁ , p₁ )∼( h₂ , p₂ ) = Σ ((x : X) h₁ x == h₂ x)
(λ H ((a : A) (! (H (f a)) ∙ (p₁ a) == p₂ a) ))
(λ H ((a : A) (! (H (f a)) ∙ (p₁ a) == p₂ a)))

module MapsCos {j : ULevel} (A : Type j) where

Expand All @@ -46,5 +46,59 @@ module MapsCos {j : ULevel} (A : Type j) where

infixr 30 <_>_∼_
<_>_∼_ : {i k} (X : Coslice i j A) {Y : Coslice k j A}
< A > X *→ Y < A > X *→ Y Type (lmax (lmax i k) j)
X *→ Y X *→ Y Type (lmax (lmax i k) j)
< X > h ∼ g = [ A , X ] h ∼ g

*→-assoc : {i k l ℓ} {X : Coslice i j A} {Y : Coslice k j A} {Z : Coslice l j A}
{W : Coslice ℓ j A} (h₃ : Z *→ W) (h₂ : Y *→ Z) (h₁ : X *→ Y)
< X > (h₃ ∘* h₂) ∘* h₁ ∼ h₃ ∘* (h₂ ∘* h₁)
fst (*→-assoc h₃ h₂ h₁) x = idp
snd (*→-assoc h₃ h₂ h₁) a =
ap (λ p p ∙ ap (fst h₃) (snd h₂ a) ∙ snd h₃ a) (ap-∘ (fst h₃) (fst h₂) (snd h₁ a)) ∙
! (ap2-∙-∙ (fst h₃) (fst h₂) (snd h₁ a) (snd h₂ a) (snd h₃ a))

-- post-composition
post-∘*-∼ : {i k l} {X : Coslice i j A} {Y : Coslice k j A} {Z : Coslice l j A}
{h₁ h₂ : X *→ Y} (f : Y *→ Z) < X > h₁ ∼ h₂ < X > f ∘* h₁ ∼ f ∘* h₂
fst (post-∘*-∼ f H) x = ap (fst f) (fst H x)
snd (post-∘*-∼ {X = X} {h₁ = h₁} f H) a =
ap (λ p p ∙ ap (fst f) (snd h₁ a) ∙ snd f a) (!-ap (fst f) (fst H (fun X a))) ∙
! (∙-assoc (ap (fst f) (! (fst H (fun X a)))) (ap (fst f) (snd h₁ a)) (snd f a)) ∙
ap (λ p p ∙ snd f a) (∙-ap (fst f) (! (fst H (fun X a))) (snd h₁ a)) ∙
ap (λ p ap (fst f) p ∙ snd f a) (snd H a)

-- pre-composition
pre-∘*-∼ : {i k l} {X : Coslice i j A} {Y : Coslice k j A} {Z : Coslice l j A}
{h₁ h₂ : X *→ Y} (f : Z *→ X) < X > h₁ ∼ h₂ < Z > h₁ ∘* f ∼ h₂ ∘* f
fst (pre-∘*-∼ f H) x = fst H (fst f x)
snd (pre-∘*-∼ {X = X} {Z = Z} {h₁ = h₁} {h₂} f H) a =
(! (∙-assoc (! (fst H (fst f (fun Z a)))) (ap (fst h₁) (snd f a)) (snd h₁ a)) ∙
ap (λ p p ∙ snd h₁ a) (hmtpy-nat-!-sq (fst H) (snd f a)) ∙
∙-assoc (ap (fst h₂) (snd f a)) (! (fst H (fun X a))) (snd h₁ a)) ∙
ap (λ p ap (fst h₂) (snd f a) ∙ p) (snd H a)

-- concatenation
infixr 40 _∼∘-cos_
_∼∘-cos_ : {i k} {X : Coslice i j A} {Y : Coslice k j A}
{h₁ h₂ h₃ : X *→ Y}
< X > h₁ ∼ h₂ < X > h₂ ∼ h₃ < X > h₁ ∼ h₃
_∼∘-cos_ {X = X} {h₁ = h₁} (H₁ , H₂) (K₁ , K₂) =
(λ x H₁ x ∙ K₁ x) ,
(λ a
(ap (λ p p ∙ snd h₁ a) (!-∙ (H₁ (fun X a)) (K₁ (fun X a))) ∙
∙-assoc (! (K₁ (fun X a))) (! (H₁ (fun X a))) (snd h₁ a)) ∙
ap (λ p ! (K₁ (fun X a)) ∙ p) (H₂ a) ∙ K₂ a)

-- identity
cos∼id : {i k} {X : Coslice i j A} {Y : Coslice k j A} (h : X *→ Y)
< X > h ∼ h
fst (cos∼id h) = λ x idp
snd (cos∼id h) = λ a idp

-- homotopy of homotopies of A-maps
infixr 30 <_>_∼∼_
<_>_∼∼_ : {i k} (X : Coslice i j A) {Y : Coslice k j A} {h₁ h₂ : X *→ Y}
< X > h₁ ∼ h₂ < X > h₁ ∼ h₂ Type (lmax k (lmax i j))
<_>_∼∼_ X {h₁ = h₁} H₁ H₂ =
Σ (fst H₁ ∼ fst H₂)
λ K (a : A) ap (λ p ! p ∙ snd h₁ a) (! (K (fun X a))) ∙ snd H₁ a == snd H₂ a
2 changes: 1 addition & 1 deletion Colimit-code/Aux/Diagram.agda
Original file line number Diff line number Diff line change
Expand Up @@ -106,5 +106,5 @@ module _ {ℓi ℓj k} {A : Type ℓj} {Γ : Graph ℓv ℓe} {F : CosDiag ℓi
PostComp : {k'} {D : Coslice k' ℓj A} CosCocone A F C (< A > C *→ D) CosCocone A F D
comp (PostComp K (f , fₚ)) i = f ∘ (fst (comp K i)) , λ a ap f (snd (comp K i) a) ∙ fₚ a
comTri (PostComp K (f , fₚ)) {y = j} {x = i} g = (λ x ap f (fst (comTri K g) x)) ,
λ a ap-cp-revR f (fst (comp K j)) (snd (F <#> g) a) (fst (comTri K g) (fun (F # i) a)) ∙
λ a ap-cp-revR f (fst (comp K j)) (snd (F <#> g) a) (fst (comTri K g) (fun (F # i) a)) ∙
ap (λ p p ∙ fₚ a) (ap (ap f) (snd (comTri K g) a))
14 changes: 7 additions & 7 deletions Colimit-code/Map-Nat/CosColimitMap18.agda
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@ module ConstrMap19 {ℓv ℓe ℓ ℓF ℓG} {Γ : Graph ℓv ℓe} {A : Type
ap (λ p ap f p ∙ idp) (ap (λ p ! (ap right (! (ap (cin j) (ap (fst (G <#> g)) τ₁₀ ∙ τ₁₃ ∙ idp)) ∙ p)) ∙ idp)
(apCommSq2 (λ x cin j (fst (G <#> g) x)) (λ v cin j (fst (G <#> g) v)) (λ x idp) τ₁₀) ∙
!-!-!-∘-∘-∘-rid (cin j) (fst (G <#> g)) (λ v cin j (fst (G <#> g) v)) right τ₁₀ τ₁₃ idp idp idp ∙ idp)) ∙
ap-∘-∙ f (right ∘ (λ v cin j (fst (G <#> g) v))) τ₁₀ (ap (right ∘ cin j) τ₁₃ ∙ idp)
ap-∘-∙-∙ f (right ∘ (λ v cin j (fst (G <#> g) v))) τ₁₀ (ap (right ∘ cin j) τ₁₃ ∙ idp)
==
!-!-∙-pth (ap (λ x f (right (cin j x))) (ap (fst (G <#> g)) τ₁₀ ∙ τ₁₃ ∙ idp)) idp ∙
ap (λ p p ∙ ap (λ x f (right (cin j x))) (ap (fst (G <#> g)) τ₁₀ ∙ τ₁₃ ∙ idp) ∙ idp) (hmtpy-nat-! (λ x idp) τ₁₀) ∙
Expand Down Expand Up @@ -145,7 +145,7 @@ module ConstrMap19 {ℓv ℓe ℓ ℓF ℓG} {Γ : Graph ℓv ℓe} {A : Type
(apCommSq2 (λ x cin j (fst (G <#> g) x)) (cin i) (cglue g) τ₁₀) ∙
!-!-!-∘-∘-∘-rid (cin j) (fst (G <#> g)) (cin i) right τ₁₀ τ₁₃ idp
idp (cglue g (fun (G # i) a)) ∙ idp)) ∙
ap-∘-∙ f (right ∘ cin i) τ₁₀ (! (ap right (cglue g (fun (G # i) a))) ∙ ap (right ∘ cin j) τ₁₃ ∙ idp)
ap-∘-∙-∙ f (right ∘ cin i) τ₁₀ (! (ap right (cglue g (fun (G # i) a))) ∙ ap (right ∘ cin j) τ₁₃ ∙ idp)
==
!-!-∙-pth (ap (λ x f (right (cin j x))) (ap (fst (G <#> g)) τ₁₀ ∙ τ₁₃ ∙ idp))
(ap f (ap right (cglue g (fst (nat δ i) (fun (F # i) a))))) ∙
Expand All @@ -169,7 +169,7 @@ module ConstrMap19 {ℓv ℓe ℓ ℓF ℓG} {Γ : Graph ℓv ℓe} {A : Type
(apCommSq2 (λ x cin j (fst (G <#> g) x)) h H τ₁₀) ∙
!-!-!-∘-∘-∘-rid (cin j) (fst (G <#> g)) h right τ₁₀ τ₁₃ idp
idp (H (fun (G # i) a)) ∙ idp)) ∙
ap-∘-∙ f (right ∘ h) τ₁₀ (! (ap right (H (fun (G # i) a))) ∙ ap (right ∘ cin j) τ₁₃ ∙ idp)
ap-∘-∙-∙ f (right ∘ h) τ₁₀ (! (ap right (H (fun (G # i) a))) ∙ ap (right ∘ cin j) τ₁₃ ∙ idp)
==
!-!-∙-pth (ap (λ x f (right (cin j x))) (ap (fst (G <#> g)) τ₁₀ ∙ τ₁₃ ∙ idp))
(ap f (ap right (H (fst (nat δ i) (fun (F # i) a))))) ∙
Expand Down Expand Up @@ -197,7 +197,7 @@ module ConstrMap19 {ℓv ℓe ℓ ℓF ℓG} {Γ : Graph ℓv ℓe} {A : Type
ap (λ p ! (ap right (! (ap (cin j) (ap (fst (G <#> g)) τ₁₀ ∙ τ₁₃ ∙ idp)) ∙ p)) ∙ idp)
(apCommSq2 (λ x cin j (fst (G <#> g) x)) (cin i) (cglue g) τ₁₀) ∙
!-!-!-∘-∘-∘-rid (cin j) (fst (G <#> g)) (cin i) right τ₁₀ τ₁₃ idp idp (cglue g (fun (G # i) a)) ∙ idp)) ∙
ap-∘-∙ f (right ∘ cin i) τ₁₀ (! (ap right (cglue g (fun (G # i) a))) ∙
ap-∘-∙-∙ f (right ∘ cin i) τ₁₀ (! (ap right (cglue g (fun (G # i) a))) ∙
ap (right ∘ cin j) τ₁₃ ∙ idp)
==
!-!-∙-pth (ap (λ x f (right (cin j x))) σ₁)
Expand Down Expand Up @@ -240,7 +240,7 @@ module ConstrMap19 {ℓv ℓe ℓ ℓF ℓG} {Γ : Graph ℓv ℓe} {A : Type
(cglue g (fst (nat δ i) (fun (F # i) a))))) ∙ idp) ∙
ap (f ∘ right ∘ cin j ∘ fst (nat δ j)) τ₅ ∙
ap (f ∘ right ∘ cin j) τ₆ ∙ ap f τ₇ ∙ τ₈)
(ap-∘-∙ f (right ∘ cin j) τ₆ τ₇) ◃∙
(ap-∘-∙-∙ f (right ∘ cin j) τ₆ τ₇) ◃∙
long-path-red τ₅
(ap (f ∘ right ∘ cin j) τ₆ ∙ ap f τ₇ ∙ τ₈)
(ap f (ap (λ x right (cin j x)) τ₆ ∙
Expand All @@ -264,7 +264,7 @@ module ConstrMap19 {ℓv ℓe ℓ ℓF ℓG} {Γ : Graph ℓv ℓe} {A : Type
right τ₁₀ τ₁₃ τ₅
τ₆ (cglue g (fun (G # i) a)) τ₇ ∙
ap (_∙_ (ap (λ x right (cin i x)) τ₁₀)) τ₁)) ◃∙
ap-∘-∙ f (right ∘ cin i) τ₁₀ τ₁₁ ◃∎
ap-∘-∙-∙ f (right ∘ cin i) τ₁₀ τ₁₁ ◃∎
=ₛ
(!-!-∙-pth (ap (λ x f (right (cin j x))) (comSq δ g (fun (F # i) a)))
(ap f (ap right (cglue g (fst (nat δ i) (fun (F # i) a))))) ∙
Expand Down Expand Up @@ -309,7 +309,7 @@ module ConstrMap19 {ℓv ℓe ℓ ℓF ℓG} {Γ : Graph ℓv ℓe} {A : Type

CosColim-NatSq2 : CosCocEq F T (Map-to-Lim-map F (f , fₚ) K-diag) (Diag-to-Lim-map (PostComp ColCoC (f , fₚ)))
W CosColim-NatSq2 i x = idp
u CosColim-NatSq2 i a = ap-∘-∙ f (right ∘ cin i) (snd (nat δ i) a) (! (glue (cin i a)))
u CosColim-NatSq2 i a = ap-∘-∙-∙ f (right ∘ cin i) (snd (nat δ i) a) (! (glue (cin i a)))
Λ CosColim-NatSq2 {i} {j} g = (λ x ap-∘-∘-!-∙-rid f right (cin j) (comSq δ g x) (cglue g (fst (nat δ i) x))) ,
λ a NatSq2-Λ-coher g a (snd (F <#> g) a) (snd (nat δ j) a) (! (glue (cin j a))) (fₚ a) (snd (nat δ i) a)
(snd (G <#> g) a) (comSq-coher δ g a)
Expand Down
22 changes: 11 additions & 11 deletions Colimit-code/Map-Nat/CosColimitPstCmp.agda
Original file line number Diff line number Diff line change
Expand Up @@ -14,9 +14,9 @@ module CosColimitPstCmp where

module _ {ℓ₁ ℓ₂ ℓ₃} {A : Type ℓ₁} {B : Type ℓ₂} {C : Type ℓ₃} (h : B C) (f : A B) where

ap-∘-∙ : {x y : A} (p₁ : x == y) {z : B} (p₂ : f y == z) {c : C} {s : h z == c}
ap-∘-∙-∙ : {x y : A} (p₁ : x == y) {z : B} (p₂ : f y == z) {c : C} {s : h z == c}
ap h (ap f p₁ ∙ p₂) ∙ s == ap (h ∘ f) p₁ ∙ ap h p₂ ∙ s
ap-∘-∙ idp p₂ = idp
ap-∘-∙-∙ idp p₂ = idp

ap-∘-rid : {x y : A} (p : x == y) ap h (ap f p) ∙ idp == ap (h ∘ f) p
ap-∘-rid idp = idp
Expand Down Expand Up @@ -71,7 +71,7 @@ module _ {ℓv ℓe ℓ ℓd ℓc₁ ℓc₂} {Γ : Graph ℓv ℓe} {A : Type
ap φ₁ (ap f p₁) ∙ idp) ∙
ap (φ₁ ∘ f ∘ right ∘ cin j) p₂ ∙
ap (φ₁ ∘ f) p₃ ∙ ap φ₁ p₄ ∙ p₅))
(ap-∘-∙ φ₁ f p₃ p₄) ◃∙
(ap-∘-∙-∙ φ₁ f p₃ p₄) ◃∙
long-path-red p₂
(ap (φ₁ ∘ f) p₃ ∙
ap φ₁ p₄ ∙ p₅)
Expand All @@ -98,7 +98,7 @@ module _ {ℓv ℓe ℓ ℓd ℓc₁ ℓc₂} {Γ : Graph ℓv ℓe} {A : Type
ap (λ p ap φ₁ p ∙ φ₂ a) (ap-cp-revR f (right ∘ cin j) p₂
p₁ ∙
ap (λ p p ∙ fₚ a) (ap (ap f) τ))) ◃∙
ap-∘-∙ φ₁ f σ (fₚ a) ◃∎
ap-∘-∙-∙ φ₁ f σ (fₚ a) ◃∎
=ₛ
(ap-cp-revR (φ₁ ∘ f) (right ∘ cin j)
p₂ p₁ ∙
Expand All @@ -107,14 +107,14 @@ module _ {ℓv ℓe ℓ ℓd ℓc₁ ℓc₂} {Γ : Graph ℓv ℓe} {A : Type
NatSq-1-Λ-red2 {i} {j} g a idp idp p₃ idp = =ₛ-in (lemma p₃ (fₚ a))
where
lemma : {z : P} (p : right (cin j (fst (F <#> g) (fun (F # i) a))) == z) (c : f z == fun T a)
↯ (NatSq-1-Λ-aux g a idp idp p c (φ₂ a)) ∙ ap-∘-∙ φ₁ f p c == idp
↯ (NatSq-1-Λ-aux g a idp idp p c (φ₂ a)) ∙ ap-∘-∙-∙ φ₁ f p c == idp
lemma idp c = idp

-- τ = (snd (comTri ColCoC g) a)

CosColim-NatSq1 : CosCocEq F U (Map-to-Lim-map (PostComp ColCoC (f , fₚ))) (PostComp ColCoC (φ ∘* (f , fₚ)))
W CosColim-NatSq1 = λ i x idp
u CosColim-NatSq1 = λ i a ap-∘-∙ φ₁ f (! (glue (cin i a))) (fₚ a)
u CosColim-NatSq1 = λ i a ap-∘-∙-∙ φ₁ f (! (glue (cin i a))) (fₚ a)
Λ CosColim-NatSq1 {i} {j} g = (λ x ap-∘-rid φ₁ f (fst (comTri ColCoC g) x)) , λ a lemma a
where
lemma : (a : A)
Expand All @@ -133,7 +133,7 @@ module _ {ℓv ℓe ℓ ℓd ℓc₁ ℓc₂} {Γ : Graph ℓv ℓe} {A : Type
ap φ₁ (ap f (fst (comTri ColCoC g) (fun (F # i) a))) ∙ idp) ∙
ap (φ₁ ∘ f ∘ fst (comp ColCoC j)) (snd (F <#> g) a) ∙
ap (φ₁ ∘ f) (snd (comp ColCoC j) a) ∙
snd (φ ∘* f , fₚ) a) (ap-∘-∙ φ₁ f (! (glue (cin j a))) (fₚ a)) ◃∙
snd (φ ∘* f , fₚ) a) (ap-∘-∙-∙ φ₁ f (! (glue (cin j a))) (fₚ a)) ◃∙
long-path-red (snd (F <#> g) a) (ap (φ₁ ∘ f) (! (glue (cin j a))) ∙
ap (fst φ) (fₚ a) ∙ snd φ a) (ap (fst φ) (ap f (! (glue (cin j a))) ∙ fₚ a) ∙ snd φ a)
(ap φ₁ (ap f (ap right (cglue g (fun (F # i) a))))) idp ◃∙ -- here
Expand All @@ -143,7 +143,7 @@ module _ {ℓv ℓe ℓ ℓd ℓc₁ ℓc₂} {Γ : Graph ℓv ℓe} {A : Type
(ap-cp-revR f (fst (comp ColCoC j)) (snd (F <#> g) a)
(fst (comTri ColCoC g) (fun (F # i) a)) ∙
ap (λ p p ∙ fₚ a) (ap (ap f) (snd (comTri ColCoC g) a)))) ◃∙
ap-∘-∙ φ₁ f (! (glue (cin i a))) (fₚ a) ◃∎
ap-∘-∙-∙ φ₁ f (! (glue (cin i a))) (fₚ a) ◃∎
=ₛ
(ap-cp-revR (φ₁ ∘ f) (fst (comp ColCoC j))
(snd (F <#> g) a) (fst (comTri ColCoC g) (fun (F # i) a)) ∙
Expand All @@ -165,7 +165,7 @@ module _ {ℓv ℓe ℓ ℓd ℓc₁ ℓc₂} {Γ : Graph ℓv ℓe} {A : Type
ap φ₁ (ap f (fst (comTri ColCoC g) (fun (F # i) a))) ∙ idp) ∙
ap (φ₁ ∘ f ∘ fst (comp ColCoC j)) (snd (F <#> g) a) ∙
ap (φ₁ ∘ f) (snd (comp ColCoC j) a) ∙
snd (φ ∘* f , fₚ) a) (ap-∘-∙ φ₁ f (! (glue (cin j a))) (fₚ a)) ◃∙
snd (φ ∘* f , fₚ) a) (ap-∘-∙-∙ φ₁ f (! (glue (cin j a))) (fₚ a)) ◃∙
long-path-red (snd (F <#> g) a) (ap (φ₁ ∘ f) (! (glue (cin j a))) ∙
ap (fst φ) (fₚ a) ∙ snd φ a) (ap (fst φ) (ap f (! (glue (cin j a))) ∙ fₚ a) ∙ snd φ a)
(ap φ₁ (ap f (ap right (cglue g (fun (F # i) a))))) idp ◃∙
Expand All @@ -175,7 +175,7 @@ module _ {ℓv ℓe ℓ ℓd ℓc₁ ℓc₂} {Γ : Graph ℓv ℓe} {A : Type
(ap-cp-revR f (fst (comp ColCoC j)) (snd (F <#> g) a)
(fst (comTri ColCoC g) (fun (F # i) a)) ∙
ap (λ p p ∙ fₚ a) (ap (ap f) (snd (comTri ColCoC g) a)))) ◃∙
ap-∘-∙ φ₁ f (! (glue (cin i a))) (fₚ a) ◃∎
ap-∘-∙-∙ φ₁ f (! (glue (cin i a))) (fₚ a) ◃∎
=ₛ⟨ 0 & 4 & NatSq-1-Λ-red g a (ap right (cglue g (fun (F # i) a))) (snd (F <#> g) a) (! (glue (cin j a))) (fₚ a) (φ₂ a) ⟩
↯ (NatSq-1-Λ-aux g a (ap right (cglue g (fun (F # i) a))) (snd (F <#> g) a) (! (glue (cin j a))) (fₚ a) (φ₂ a)) ◃∙
ap (λ q q) (ap-cp-revR φ₁ (f ∘ fst (comp ColCoC j)) (snd (F <#> g) a)
Expand All @@ -184,7 +184,7 @@ module _ {ℓv ℓe ℓ ℓd ℓc₁ ℓc₂} {Γ : Graph ℓv ℓe} {A : Type
(ap-cp-revR f (fst (comp ColCoC j)) (snd (F <#> g) a)
(fst (comTri ColCoC g) (fun (F # i) a)) ∙
ap (λ p p ∙ fₚ a) (ap (ap f) (snd (comTri ColCoC g) a)))) ◃∙
ap-∘-∙ φ₁ f (! (glue (cin i a))) (fₚ a) ◃∎
ap-∘-∙-∙ φ₁ f (! (glue (cin i a))) (fₚ a) ◃∎
=ₛ⟨ NatSq-1-Λ-red2 g a (ap right (cglue g (fun (F # i) a))) (snd (F <#> g) a) (! (glue (cin j a))) (snd (comTri ColCoC g) a) ⟩
(ap-cp-revR (φ₁ ∘ f) (fst (comp ColCoC j))
(snd (F <#> g) a) (fst (comTri ColCoC g) (fun (F # i) a)) ∙
Expand Down
2 changes: 1 addition & 1 deletion Colimit-code/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ check the entire development in a reasonable amount of time.

## Manual Type-Checking

1. Install Agda 2.6.3.
1. Install Agda 2.6.4.3.
2. Install the stripped, modified HoTT-Agda library under `../HoTT-Agda`.
3. Type-check the file `Main-Theorem/CosColim-Adjunction.agda`.

Expand Down
Loading

0 comments on commit 4473169

Please sign in to comment.