Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

small cosmetic stuff #12

Merged
merged 1 commit into from
Feb 12, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 15 additions & 15 deletions HoTT-Agda/core/lib/PathOver.agda
Original file line number Diff line number Diff line change
Expand Up @@ -320,14 +320,12 @@ module _ {i j} {A : Type i} where

-- apd-tr conversion

from-transp-g : (B : A → Type j) {a a' : A} (p : a == a')
{u : B a} {v : B a'}
→ (transport B p u == v)
→ (u == v [ B ↓ p ])
from-transp-g : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'}
→ transport B p u == v → u == v [ B ↓ p ]
from-transp-g B idp h = h

apd-to-tr : (B : A → Type j) (f : (a : A) → B a) {x y : A} (p : x == y)
(s : transport B p (f x) == f y)
apd-to-tr : (B : A → Type j) (f : (a : A) → B a) {x y : A}
(p : x == y) (s : transport B p (f x) == f y)
→ apd f p == from-transp-g B p s → apd-tr f p == s
apd-to-tr B f idp s h = h

Expand All @@ -341,8 +339,7 @@ module _ {i j} {A : Type i} {B : Type j} (f g : A → B) where

module _ (K : (z : A) → f z == g z) where

apd-to-hnat : {x y : A} (p : x == y)
(m : ap f p == K x ∙ ap g p ∙' ! (K y))
apd-to-hnat : {x y : A} (p : x == y) (m : ap f p == K x ∙ ap g p ∙' ! (K y))
→ apd K p == from-hmpty-nat p m → hmpty-nat-∙'-r K p == m
apd-to-hnat {x} idp m q = lemma (K x) m q
where
Expand All @@ -354,13 +351,14 @@ module _ {i j} {A : Type i} {B : Type j} (f g : A → B) where
apd-to-hnat-∙ : {x y z : A} (p₁ : x == y) (p₂ : y == z)
{m₁ : ap f p₁ == K x ∙ ap g p₁ ∙' ! (K y)} {m₂ : ap f p₂ == K y ∙ ap g p₂ ∙' ! (K z)}
(τ₁ : hmpty-nat-∙'-r K p₁ == m₁) (τ₂ : hmpty-nat-∙'-r K p₂ == m₂)
→ hmpty-nat-∙'-r K (p₁ ∙ p₂)
hmpty-nat-∙'-r K (p₁ ∙ p₂)
==
↯ (ap-∙ f p₁ p₂ ◃∙
ap (λ p → p ∙ ap f p₂) m₁ ◃∙
ap (λ p → (K x ∙ ap g p₁ ∙' ! (K y)) ∙ p) m₂ ◃∙
assoc-tri-!-mid (K x) (ap g p₁) (K y) (ap g p₂) (! (K z)) ◃∙
ap (λ p → K x ∙ p ∙' ! (K z)) (! (ap-∙ g p₁ p₂)) ◃∎)
↯ (ap-∙ f p₁ p₂ ◃∙
ap (λ p → p ∙ ap f p₂) m₁ ◃∙
ap (λ p → (K x ∙ ap g p₁ ∙' ! (K y)) ∙ p) m₂ ◃∙
assoc-tri-!-mid (K x) (ap g p₁) (K y) (ap g p₂) (! (K z)) ◃∙
ap (λ p → K x ∙ p ∙' ! (K z)) (! (ap-∙ g p₁ p₂)) ◃∎)
apd-to-hnat-∙ {x} idp idp idp idp = assoc-tri-!-coher (K x)

apd-to-hnat-! : {x y : A} (p : x == y)
Expand All @@ -370,7 +368,9 @@ module _ {i j} {A : Type i} {B : Type j} (f g : A → B) where

apd-to-hnat-ap! : ∀ {l} {C : Type l} (h : B → C) {x y : A} (p : x == y)
{m : ap f p == K x ∙ ap g p ∙' ! (K y)} (τ : hmpty-nat-∙'-r K p == m)
→ hmpty-nat-∙'-r (λ z → ap h (! (K z))) p ==
hmpty-nat-∙'-r (λ z → ap h (! (K z))) p
==
ap-∘-long h g f K p ∙
! (ap (λ q → ap h (! (K x)) ∙ ap h q ∙' ! (ap h (! (K y)))) m) ∙
! (ap (λ q → ap h (! (K x)) ∙ q ∙' ! (ap h (! (K y)))) (ap-∘ h f p))
Expand Down