Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions paddle/fluid/eager/pylayer/py_layer_node.h
Original file line number Diff line number Diff line change
Expand Up @@ -45,8 +45,13 @@ class GradNodePyLayer : public GradNodeBase {
GradNodePyLayer(const GradNodePyLayer& other) : GradNodeBase(other) {
this->ctx_ = other.ctx_;
Py_INCREF(this->ctx_);
this->name_ = other.name_;
this->forward_outputs_meta_ = other.forward_outputs_meta_;
this->forward_outputs_place_ = other.forward_outputs_place_;
this->forward_outputs_dist_attr_ = other.forward_outputs_dist_attr_;
this->forward_outputs_global_dims_ = other.forward_outputs_global_dims_;
this->forward_outputs_is_dist_meta_ = other.forward_outputs_is_dist_meta_;
this->grad_in_dtype_consistent_ = other.grad_in_dtype_consistent_;
}

~GradNodePyLayer() override;
Expand Down
36 changes: 36 additions & 0 deletions test/legacy_test/test_pylayer_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -779,6 +779,42 @@ def backward(ctx, dy):
z.backward()
self.assertEqual(cus_tanh_backward_input.dtype, paddle.float16)

def test_pylayer_with_partial_grad(self):
class tanh(PyLayer):
@staticmethod
def forward(ctx, x1, x2, func1, func2=paddle.square):
ctx.func = func2
y1 = func1(x1)
y2 = func1(x2)
ctx.save_for_backward(y1, y2)
ctx.mark_non_differentiable(y2)
return y1, 1, y2, None

@staticmethod
def backward(ctx, dy1, dy2):
y1, y2 = ctx.saved_tensor()
re1 = dy1 * (1 - ctx.func(y1))
re2 = dy2 * (1 - paddle.square(y2))
return re1, re2

input1 = paddle.randn([2, 3]).astype("float64")
input2 = input1.detach().clone()
input1.stop_gradient = False
input2.stop_gradient = False
z = tanh.apply(input1, input1, paddle.tanh, paddle.square)
z = z[0] + z[2]
out = z.mean()
(input1_grad,) = paddle.grad(out, [input1], retain_graph=True)

y2_0 = paddle.tanh(input2)
y2_1 = paddle.tanh(input2)
y2_1.stop_gradient = True
z2 = y2_0 + y2_1
out2 = z2.mean()
(input2_grad,) = paddle.grad(out2, [input2], retain_graph=True)

np.testing.assert_allclose(input1_grad, input2_grad)


if __name__ == '__main__':
unittest.main()
Loading