Skip to content
Closed
Show file tree
Hide file tree
Changes from 8 commits
Commits
Show all changes
37 commits
Select commit Hold shift + click to select a range
5394658
Final commit: add clinical DICOM preprocessing files, workflow PDF, a…
Hitendrasinhdata7 Dec 14, 2025
aeabbbd
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 14, 2025
24665aa
Add clinical DICOM preprocessing Python module, test module, PDF; rem…
Hitendrasinhdata7 Dec 14, 2025
798f8af
Remove old notebook files after converting to .py modules
Hitendrasinhdata7 Dec 14, 2025
b3a6ac2
Add clinical DICOM preprocessing utilities for CT/MRI with unit tests
Hitendrasinhdata7 Dec 14, 2025
a446448
Update clinical preprocessing utilities and tests per CodeRabbit revi…
Hitendrasinhdata7 Dec 14, 2025
d7f134c
Refactor clinical preprocessing: add custom exceptions, use isinstanc…
Hitendrasinhdata7 Dec 14, 2025
ce7850f
Update clinical preprocessing: add Google-style Returns, parameter ch…
Hitendrasinhdata7 Dec 14, 2025
01b88fa
Fix clinical preprocessing module based on code review feedback
Hitendrasinhdata7 Dec 17, 2025
81b7f5b
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 17, 2025
821fc9a
Complete fix for all critical code review issues
Hitendrasinhdata7 Dec 17, 2025
1a15437
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 17, 2025
d12bd51
Hitendrasinh Rathod <[email protected]>
Hitendrasinhdata7 Dec 17, 2025
634136a
Merge branch 'clinical-dicom-preprocessing' of https://github.com/Hit…
Hitendrasinhdata7 Dec 17, 2025
34a7aa2
Complete fix for all CI and code review issues
Hitendrasinhdata7 Dec 17, 2025
3a493d4
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 17, 2025
2b0f6a7
Add MetaTensor import and return type hint
Hitendrasinhdata7 Dec 17, 2025
f0261b8
Hitendrasinh Rathod <[email protected]>
Hitendrasinhdata7 Dec 17, 2025
1418dcc
Merge branch 'clinical-dicom-preprocessing' of https://github.com/Hit…
Hitendrasinhdata7 Dec 17, 2025
1e68a5a
Fix docstring: add Returns section and correct Raises section formatting
Hitendrasinhdata7 Dec 17, 2025
7030e7d
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 17, 2025
441d48d
Add clinical preprocessing transforms
Hitendrasinhdata7 Dec 20, 2025
11dce12
Resolve merge conflict - keep clinical preprocessing module
Hitendrasinhdata7 Dec 20, 2025
f513c16
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 20, 2025
2986d2e
Fix CodeRabbit review issues
Hitendrasinhdata7 Dec 20, 2025
b3e8f87
Address CodeRabbit review suggestions
Hitendrasinhdata7 Dec 20, 2025
5a4fbb5
Final fixes per CodeRabbit review
Hitendrasinhdata7 Dec 20, 2025
c273cf7
Fix CI compliance: formatting, type hints, line length
Hitendrasinhdata7 Dec 20, 2025
d0961e1
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 20, 2025
9753c34
Fix CI compliance for clinical preprocessing
Hitendrasinhdata7 Dec 20, 2025
0daee66
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 20, 2025
885ae4b
Fix CodeRabbit issues: return type and exception classes
Hitendrasinhdata7 Dec 20, 2025
e50560d
Merge remote changes and fix CodeRabbit review issues
Hitendrasinhdata7 Dec 20, 2025
68038cb
Improve tests per CodeRabbit suggestions
Hitendrasinhdata7 Dec 20, 2025
b241ee6
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 20, 2025
c4c2303
Improve mock setup and add MRI validation
Hitendrasinhdata7 Dec 20, 2025
01b60f0
Merge formatting and apply test improvements
Hitendrasinhdata7 Dec 20, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added docs/clinical_dicom_workflow.pdf
Binary file not shown.
Binary file added monai/docs/clinical_dicom_workflow.pdf
Binary file not shown.
84 changes: 84 additions & 0 deletions monai/tests/test_clinical_preprocessing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
import pytest
from unittest.mock import patch
from monai.transforms import LoadImage, EnsureChannelFirst, ScaleIntensityRange, NormalizeIntensity
from monai.transforms.clinical_preprocessing import (
get_ct_preprocessing_pipeline,
get_mri_preprocessing_pipeline,
preprocess_dicom_series,
UnsupportedModalityError,
ModalityTypeError,
)


def test_ct_preprocessing_pipeline():
"""Test CT preprocessing pipeline returns expected transform composition and parameters."""
pipeline = get_ct_preprocessing_pipeline()
assert hasattr(pipeline, 'transforms')
assert len(pipeline.transforms) == 3
assert isinstance(pipeline.transforms[0], LoadImage)
assert isinstance(pipeline.transforms[1], EnsureChannelFirst)
assert isinstance(pipeline.transforms[2], ScaleIntensityRange)

# Verify CT-specific HU window parameters
scale_transform = pipeline.transforms[2]
assert scale_transform.a_min == -1000
assert scale_transform.a_max == 400
assert scale_transform.b_min == 0.0
assert scale_transform.b_max == 1.0
assert scale_transform.clip is True


def test_mri_preprocessing_pipeline():
"""Test MRI preprocessing pipeline returns expected transform composition and parameters."""
pipeline = get_mri_preprocessing_pipeline()
assert hasattr(pipeline, 'transforms')
assert len(pipeline.transforms) == 3
assert isinstance(pipeline.transforms[0], LoadImage)
assert isinstance(pipeline.transforms[1], EnsureChannelFirst)
assert isinstance(pipeline.transforms[2], NormalizeIntensity)

# Verify MRI-specific normalization parameter
normalize_transform = pipeline.transforms[2]
assert normalize_transform.nonzero is True


def test_preprocess_dicom_series_invalid_modality():
"""Test preprocess_dicom_series raises UnsupportedModalityError for unsupported modality."""
with pytest.raises(UnsupportedModalityError, match=r"Unsupported modality.*PET.*CT, MR, MRI"):
preprocess_dicom_series("dummy_path.dcm", "PET")


def test_preprocess_dicom_series_invalid_type():
"""Test preprocess_dicom_series raises ModalityTypeError for non-string modality."""
with pytest.raises(ModalityTypeError, match=r"modality must be a string, got int"):
preprocess_dicom_series("dummy_path.dcm", 123)


# ------------------------
# Tests for valid modalities
# ------------------------

@patch("monai.transforms.clinical_preprocessing.get_ct_preprocessing_pipeline")
def test_preprocess_dicom_series_ct(mock_pipeline):
"""Test preprocess_dicom_series successfully runs for CT modality."""
dummy_output = "ct_processed"
mock_pipeline.return_value = lambda x: dummy_output
result = preprocess_dicom_series("dummy_path.dcm", "CT")
assert result == dummy_output

# Test lowercase and whitespace variants
result2 = preprocess_dicom_series("dummy_path.dcm", " ct ")
assert result2 == dummy_output


@patch("monai.transforms.clinical_preprocessing.get_mri_preprocessing_pipeline")
def test_preprocess_dicom_series_mr(mock_pipeline):
"""Test preprocess_dicom_series successfully runs for MR modality."""
dummy_output = "mr_processed"
mock_pipeline.return_value = lambda x: dummy_output
result = preprocess_dicom_series("dummy_path.dcm", "MR")
assert result == dummy_output

# Test lowercase and "MRI" variant
result2 = preprocess_dicom_series("dummy_path.dcm", "mri")
assert result2 == dummy_output
53 changes: 53 additions & 0 deletions monai/transforms/clinical_preprocessing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
import pytest
from monai.transforms import LoadImage, EnsureChannelFirst, ScaleIntensityRange, NormalizeIntensity
from monai.transforms.clinical_preprocessing import (
get_ct_preprocessing_pipeline,
get_mri_preprocessing_pipeline,
preprocess_dicom_series,
UnsupportedModalityError,
ModalityTypeError,
)


def test_ct_preprocessing_pipeline():
"""Test CT preprocessing pipeline returns expected transform composition and parameters."""
pipeline = get_ct_preprocessing_pipeline()
assert hasattr(pipeline, 'transforms')
assert len(pipeline.transforms) == 3
assert isinstance(pipeline.transforms[0], LoadImage)
assert isinstance(pipeline.transforms[1], EnsureChannelFirst)
assert isinstance(pipeline.transforms[2], ScaleIntensityRange)

# Verify CT-specific HU window parameters
scale_transform = pipeline.transforms[2]
assert scale_transform.a_min == -1000
assert scale_transform.a_max == 400
assert scale_transform.b_min == 0.0
assert scale_transform.b_max == 1.0
assert scale_transform.clip is True


def test_mri_preprocessing_pipeline():
"""Test MRI preprocessing pipeline returns expected transform composition and parameters."""
pipeline = get_mri_preprocessing_pipeline()
assert hasattr(pipeline, 'transforms')
assert len(pipeline.transforms) == 3
assert isinstance(pipeline.transforms[0], LoadImage)
assert isinstance(pipeline.transforms[1], EnsureChannelFirst)
assert isinstance(pipeline.transforms[2], NormalizeIntensity)

# Verify MRI-specific normalization parameter
normalize_transform = pipeline.transforms[2]
assert normalize_transform.nonzero is True


def test_preprocess_dicom_series_invalid_modality():
"""Test preprocess_dicom_series raises UnsupportedModalityError for unsupported modality."""
with pytest.raises(UnsupportedModalityError, match=r"Unsupported modality.*PET.*CT, MR, MRI"):
preprocess_dicom_series("dummy_path.dcm", "PET")


def test_preprocess_dicom_series_invalid_type():
"""Test preprocess_dicom_series raises ModalityTypeError for non-string modality."""
with pytest.raises(ModalityTypeError, match=r"modality must be a string, got int"):
preprocess_dicom_series("dummy_path.dcm", 123)
Loading