Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion monai/transforms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -366,6 +366,7 @@
MixUpD,
MixUpDict,
)
from .signal import RadialFourier3D, RadialFourierFeatures3D
from .signal.array import (
SignalContinuousWavelet,
SignalFillEmpty,
Expand All @@ -376,7 +377,6 @@
SignalRandAddSquarePulsePartial,
SignalRandDrop,
SignalRandScale,
SignalRandShift,
SignalRemoveFrequency,
)
from .signal.dictionary import SignalFillEmptyd, SignalFillEmptyD, SignalFillEmptyDict
Expand Down
9 changes: 9 additions & 0 deletions monai/transforms/signal/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,3 +8,12 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Signal processing transforms for medical imaging.
"""

from __future__ import annotations

from .radial_fourier import RadialFourier3D, RadialFourierFeatures3D

__all__ = ["RadialFourier3D", "RadialFourierFeatures3D"]
317 changes: 317 additions & 0 deletions monai/transforms/signal/radial_fourier.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,317 @@
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
3D Radial Fourier Transform for medical imaging data.
"""

from __future__ import annotations

import math
from collections.abc import Sequence
from typing import Optional, Union, cast

import torch
from torch.fft import fftn, fftshift, ifftn, ifftshift

from monai.config import NdarrayOrTensor
from monai.transforms.transform import Transform
from monai.utils import convert_data_type


class RadialFourier3D(Transform):
"""
Computes the 3D Radial Fourier Transform of medical imaging data.

This transform converts 3D medical images into radial frequency domain representations,
which is particularly useful for handling anisotropic resolution common in medical scans
(e.g., different resolution in axial vs coronal planes).
The radial transform provides rotation-invariant frequency analysis and can help
normalize frequency representations across datasets with different acquisition parameters.

Args:
normalize: If ``True``, normalize the output by the number of voxels.
return_magnitude: If ``True``, return magnitude of the complex result.
return_phase: If ``True``, return phase of the complex result.
radial_bins: Number of radial bins for frequency aggregation.
If ``None``, returns full 3D spectrum.
max_frequency: Maximum normalized frequency to include (0.0 to 1.0].
spatial_dims: Spatial dimensions to apply transform to.
Default is last three dimensions.

Returns:
Radial Fourier transform of input data. Shape depends on parameters:
- If ``radial_bins`` is ``None`` and only magnitude OR phase is requested:
same spatial shape as input (..., D, H, W)
- If ``radial_bins`` is ``None`` and both magnitude AND phase are requested:
shape (..., D, H, 2*W) [magnitude and phase concatenated along last dimension]
- If ``radial_bins`` is set and only magnitude OR phase is requested:
shape (..., radial_bins)
- If ``radial_bins`` is set and both magnitude AND phase are requested:
shape (..., 2*radial_bins)

Raises:
ValueError: If ``max_frequency`` not in (0.0, 1.0], ``radial_bins`` < 1,
or both ``return_magnitude`` and ``return_phase`` are ``False``.
"""

def __init__(
self,
normalize: bool = True,
return_magnitude: bool = True,
return_phase: bool = False,
radial_bins: Optional[int] = None,
max_frequency: float = 1.0,
spatial_dims: Union[int, Sequence[int]] = (-3, -2, -1),
) -> None:
super().__init__()
self.normalize = normalize
self.return_magnitude = return_magnitude
self.return_phase = return_phase
self.radial_bins = radial_bins
self.max_frequency = max_frequency
if isinstance(spatial_dims, int):
spatial_dims = (spatial_dims,)
self.spatial_dims = tuple(spatial_dims)

if not 0.0 < max_frequency <= 1.0:
raise ValueError("max_frequency must be in (0.0, 1.0]")
if radial_bins is not None and radial_bins < 1:
raise ValueError("radial_bins must be >= 1")
if not return_magnitude and not return_phase:
raise ValueError("At least one of return_magnitude or return_phase must be True")

def _compute_radial_coordinates(
self, shape: tuple[int, ...], device: Optional[torch.device] = None
) -> torch.Tensor:
"""
Compute normalized radial frequency coordinates.

Args:
shape: Spatial shape of the input (D, H, W).
device: Device for the output tensor (defaults to CPU if None).

Returns:
Tensor of shape matching input spatial dims, containing radial distances
from DC (zero-frequency) component (range ~0 to 0.5).
"""
coords = []
for dim_size in shape:
freq = torch.fft.fftfreq(dim_size, device=device)
coords.append(freq)
mesh = torch.meshgrid(coords, indexing="ij")
radial = torch.sqrt(sum(c**2 for c in mesh))
return radial

def _compute_radial_spectrum(self, spectrum: torch.Tensor, radial_coords: torch.Tensor) -> torch.Tensor:
"""
Aggregate complex spectrum into radial bins.

Args:
spectrum: Flattened complex FFT spectrum.
radial_coords: Flattened radial distances corresponding to spectrum.

Returns:
Complex tensor of shape (radial_bins,) with mean values per bin
(or original spectrum if radial_bins is None).
"""
if self.radial_bins is None:
return spectrum

max_r = self.max_frequency * 0.5
bin_edges = torch.linspace(0, max_r, self.radial_bins + 1, device=spectrum.device)

result_real = torch.zeros(self.radial_bins, dtype=spectrum.real.dtype, device=spectrum.device)
result_imag = torch.zeros(self.radial_bins, dtype=spectrum.imag.dtype, device=spectrum.device)

bin_indices = torch.bucketize(radial_coords, bin_edges[1:-1], right=False)

for i in range(self.radial_bins):
mask = bin_indices == i
if mask.any():
result_real[i] = spectrum.real[mask].mean()
result_imag[i] = spectrum.imag[mask].mean()

return torch.complex(result_real, result_imag)

def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor:
"""
Apply 3D Radial Fourier Transform to input data.

Args:
img: Input medical image data. Expected shape: (..., D, H, W)
where D, H, W are spatial dimensions.

Returns:
Transformed data in radial frequency domain (ndarray or Tensor matching input type).

Raises:
ValueError: If input does not have exactly 3 spatial dimensions.
"""
img_tensor, *_ = convert_data_type(img, torch.Tensor)
spatial_shape = tuple(img_tensor.shape[d] for d in self.spatial_dims)
if len(spatial_shape) != 3:
raise ValueError("Expected 3 spatial dimensions")

spectrum = fftn(ifftshift(img_tensor, dim=self.spatial_dims), dim=self.spatial_dims)
spectrum = fftshift(spectrum, dim=self.spatial_dims)

if self.normalize:
norm_factor = math.prod(spatial_shape)
spectrum = spectrum / norm_factor

radial_coords = self._compute_radial_coordinates(spatial_shape, device=spectrum.device)

if self.radial_bins is not None:
orig_shape = spectrum.shape
spatial_indices = [d % len(orig_shape) for d in self.spatial_dims]
non_spatial_indices = [i for i in range(len(orig_shape)) if i not in spatial_indices]

flat_shape = (*[orig_shape[i] for i in non_spatial_indices], -1)
spectrum_flat = spectrum.moveaxis(spatial_indices, [-3, -2, -1]).reshape(flat_shape)
radial_flat = radial_coords.flatten()

non_spatial_dims = spectrum_flat.shape[:-1]
non_spatial_product = math.prod(non_spatial_dims)
spectrum_2d = spectrum_flat.reshape(non_spatial_product, -1)

results = []
for i in range(non_spatial_product):
elem_spectrum = spectrum_2d[i]
radial_result = self._compute_radial_spectrum(elem_spectrum, radial_flat)
results.append(radial_result)

spectrum = torch.stack(results, dim=0)
spectrum = spectrum.reshape(*non_spatial_dims, self.radial_bins)
else:
if self.max_frequency < 1.0:
freq_mask = radial_coords <= (self.max_frequency * 0.5)
n_non_spatial = len(spectrum.shape) - len(spatial_shape)
for _ in range(n_non_spatial):
freq_mask = freq_mask.unsqueeze(0)
spectrum = spectrum * freq_mask

output: Optional[torch.Tensor] = None
if self.return_magnitude:
magnitude = torch.abs(spectrum)
output = magnitude if output is None else torch.cat([output, magnitude], dim=-1)
if self.return_phase:
phase = torch.angle(spectrum)
output = phase if output is None else torch.cat([output, phase], dim=-1)

output = cast(torch.Tensor, output)
output, *_ = convert_data_type(output, type(img))
return output

def inverse(self, radial_data: NdarrayOrTensor, original_shape: tuple[int, ...]) -> NdarrayOrTensor:
"""
Inverse transform from radial frequency domain to spatial domain.

Args:
radial_data: Data in radial frequency domain.
original_shape: Original spatial shape (D, H, W).

Returns:
Reconstructed spatial data.

Raises:
ValueError: If input dimensions don't match expected shape for magnitude+phase.
NotImplementedError: If radial_bins is not None.
"""
if self.radial_bins is not None:
raise NotImplementedError("Exact inverse not available for radially binned data.")

radial_tensor, *_ = convert_data_type(radial_data, torch.Tensor)

if self.return_magnitude and self.return_phase:
last_dim = radial_tensor.shape[-1]
if last_dim != original_shape[-1] * 2:
raise ValueError("Expected last dimension to be doubled for magnitude+phase.")
split_size = original_shape[-1]
magnitude = radial_tensor[..., :split_size]
phase = radial_tensor[..., split_size:]
radial_tensor = torch.complex(magnitude * torch.cos(phase), magnitude * torch.sin(phase))

result = ifftn(ifftshift(radial_tensor, dim=self.spatial_dims), dim=self.spatial_dims)
result = fftshift(result, dim=self.spatial_dims)

if self.normalize:
result = result * math.prod(original_shape)

result, *_ = convert_data_type(result.real, type(radial_data))
return result


class RadialFourierFeatures3D(Transform):
"""
Extract multi-scale radial Fourier features from 3D medical images.

This transform composes multiple :class:`RadialFourier3D` instances with different
radial bin counts to produce a concatenated feature vector. Useful for creating
rotation-invariant frequency descriptors for downstream tasks like classification
or registration.

Args:
n_bins_list: Sequence of radial bin counts to compute (e.g., (32, 64, 128)).
return_types: Sequence of output types to compute per bin:
``"magnitude"``, ``"phase"``, or ``"complex"`` (both concatenated as real values).
normalize: If ``True``, normalize FFT by the number of voxels.

Returns:
Concatenated 1D feature vector along the last dimension.
Total feature size = sum over bins of (n_bins * factors based on return_types).

Raises:
ValueError: If ``n_bins_list`` or ``return_types`` is empty.
"""

def __init__(
self,
n_bins_list: Sequence[int] = (32, 64, 128),
return_types: Sequence[str] = ("magnitude",),
normalize: bool = True,
) -> None:
super().__init__()
self.n_bins_list = n_bins_list
self.return_types = return_types
self.normalize = normalize

if not n_bins_list:
raise ValueError("n_bins_list must not be empty")
if not return_types:
raise ValueError("return_types must not be empty")

self.transforms = []
for n_bins in n_bins_list:
for return_type in return_types:
transform = RadialFourier3D(
normalize=normalize,
return_magnitude=(return_type in {"magnitude", "complex"}),
return_phase=(return_type in {"phase", "complex"}),
radial_bins=n_bins,
)
self.transforms.append(transform)

def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor:
"""
Apply the composed radial Fourier transforms.

Args:
img: Input data with at least 3 spatial dimensions (..., D, H, W).

Returns:
Concatenated feature tensor matching input type (ndarray or Tensor).
"""
features = [transform(img) for transform in self.transforms]
features_tensors = [convert_data_type(feat, torch.Tensor)[0] for feat in features]
output = torch.cat(features_tensors, dim=-1)
output, *_ = convert_data_type(output, type(img))
return output
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ exclude = '''

[tool.pycln]
all = true
exclude = "monai/bundle/__main__.py"
exclude = "monai/bundle/__main__.py|monai/transforms/__init__.py"

[tool.ruff]
line-length = 133
Expand Down
17 changes: 17 additions & 0 deletions tests/transforms/signal/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Tests for signal processing transforms.
"""

# Optional: re-export test classes for convenience (if you want)
# from .test_radial_fourier import TestRadialFourier3D, TestRadialFourierFeatures3D
Loading
Loading