-
Notifications
You must be signed in to change notification settings - Fork 259
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
beginner_source/nlp/README.txt λ²μ (#956)
- Loading branch information
Showing
1 changed file
with
17 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,44 +1,33 @@ | ||
Deep Learning for NLP with Pytorch | ||
PyTorchλ₯Ό νμ©ν μμ°μ΄ μ²λ¦¬λ₯Ό μν λ₯λ¬λ | ||
---------------------------------- | ||
**λ²μ**: `μ΅κ°μ£Ό <http://github.com/Choigapju>`_ | ||
|
||
These tutorials will walk you through the key ideas of deep learning | ||
programming using Pytorch. Many of the concepts (such as the computation | ||
graph abstraction and autograd) are not unique to Pytorch and are | ||
relevant to any deep learning toolkit out there. | ||
|
||
They are focused specifically on NLP for people who have never written | ||
code in any deep learning framework (e.g, TensorFlow,Theano, Keras, DyNet). | ||
The tutorials assumes working knowledge of core NLP problems: part-of-speech | ||
tagging, language modeling, etc. It also assumes familiarity with neural | ||
networks at the level of an intro AI class (such as one from the Russel and | ||
Norvig book). Usually, these courses cover the basic backpropagation algorithm | ||
on feed-forward neural networks, and make the point that they are chains of | ||
compositions of linearities and non-linearities. This tutorial aims to get | ||
you started writing deep learning code, given you have this prerequisite | ||
knowledge. | ||
|
||
Note these tutorials are about *models*, not data. For all of the models, | ||
a few test examples are created with small dimensionality so you can see how | ||
the weights change as it trains. If you have some real data you want to | ||
try, you should be able to rip out any of the models from this notebook | ||
and use them on it. | ||
μ΄ νν λ¦¬μΌ μ리μ¦λ PyTorchλ₯Ό νμ©ν λ₯λ¬λ νλ‘κ·Έλλ°μ ν΅μ¬ κ°λ λ€μ λ¨κ³λ³λ‘ μλ΄ν©λλ€. | ||
μ¬κΈ°μ λ€λ£¨λ λ§μ κ°λ λ€(μλ₯Ό λ€μ΄, κ³μ° κ·Έλν μΆμνμ μλ λ―ΈλΆ)μ PyTorchμλ§ κ΅νλ κ²μ΄ μλλΌ νμ‘΄νλ λͺ¨λ λ₯λ¬λ λꡬμ 곡ν΅μ μΌλ‘ μ μ©λλ μ리μ λλ€. | ||
|
||
μ΄ νν 리μΌμ νΉν λ₯λ¬λ νλ μμν¬(μ: TensorFlow, Theano, Keras, DyNet λ±)λ‘ μ½λλ₯Ό μμ±ν΄ λ³Έ κ²½νμ΄ μ ν μλ λΆλ€μ μν μμ°μ΄ μ²λ¦¬μ μ΄μ μ λ§μΆκ³ μμ΅λλ€. | ||
νμ¬ νκΉ , μΈμ΄ λͺ¨λΈλ§ λ± ν΅μ¬ μμ°μ΄ μ²λ¦¬ λ¬Έμ μ λν κΈ°λ³Έμ μΈ μ΄ν΄λ₯Ό μ μ λ‘ ν©λλ€. λν μ λ¬Έ μμ€μ μΈκ³΅μ§λ₯ κ°μ’(μ: Russellκ³Ό Norvigμ κ΅μ¬μμ λ€λ£¨λ μμ€)μμ νμ΅νλ μ λμ μ κ²½λ§ μ§μμ κ°μΆκ³ μλ€κ³ κ°μ ν©λλ€. | ||
μΌλ°μ μΌλ‘ μ΄λ° κ°μ’λ€μ μμ ν μ κ²½λ§μ κΈ°λ³Έμ μΈ μμ ν μκ³ λ¦¬μ¦μ λ€λ£¨λ©°, μ κ²½λ§μ΄ μ ν λ³νκ³Ό λΉμ ν νμ±ν ν¨μμ μ°μ ꡬμ±μ΄λΌλ μ μ κ°μ‘°ν©λλ€. λ³Έ νν 리μΌμ μ£Όλ λͺ©νλ μ΄λ¬ν μ μ μ§μμ λ°νμΌλ‘ μ¬λ¬λΆμ΄ μ€μ λ‘ λ₯λ¬λ μ½λλ₯Ό μμ±νκΈ° μμν μ μλλ‘ μλ΄νλ κ²μ λλ€. | ||
|
||
μ°Έκ³ λ릴 μ μ μ΄ νν 리μΌμ λ°μ΄ν°κ° μλ *λͺ¨λΈ*μ κ΄ν κ²μ λλ€. λͺ¨λ λͺ¨λΈμ λν΄, | ||
νμ΅ κ³Όμ μμ κ°μ€μΉκ° μ΄λ»κ² λ³ννλμ§ νμΈν μ μλλ‘ μμ μ°¨μμ ν μ€νΈ μμ λ€μ λͺ κ°μ§ μμ±νμ΅λλ€. μ€μ λ°μ΄ν°λ‘ μλν΄λ³΄κ³ μΆμΌμλ€λ©΄, μ΄ λ ΈνΈλΆμ λͺ¨λ λͺ¨λΈμ κ·Έλλ‘ κ°μ Έκ°μ μ¬λ¬λΆμ λ°μ΄ν°μ μ μ©ν΄λ³΄μ€ μ μμ΅λλ€. | ||
|
||
1. pytorch_tutorial.py | ||
Introduction to PyTorch | ||
νμ΄ν μΉ μκ° | ||
https://tutorials.pytorch.kr/beginner/nlp/pytorch_tutorial.html | ||
|
||
2. deep_learning_tutorial.py | ||
Deep Learning with PyTorch | ||
λ₯λ¬λ μκ° | ||
https://tutorials.pytorch.kr/beginner/nlp/deep_learning_tutorial.html | ||
|
||
3. word_embeddings_tutorial.py | ||
Word Embeddings: Encoding Lexical Semantics | ||
λ¨μ΄ μλ² λ© μκ° | ||
https://tutorials.pytorch.kr/beginner/nlp/word_embeddings_tutorial.html | ||
|
||
4. sequence_models_tutorial.py | ||
Sequence Models and Long Short-Term Memory Networks | ||
μμ°¨ λͺ¨λΈ μκ° | ||
https://tutorials.pytorch.kr/beginner/nlp/sequence_models_tutorial.html | ||
|
||
5. advanced_tutorial.py | ||
Advanced: Making Dynamic Decisions and the Bi-LSTM CRF | ||
https://tutorials.pytorch.kr/beginner/nlp/advanced_tutorial.html | ||
κ³ κΈ μκ° | ||
https://tutorials.pytorch.kr/beginner/nlp/advanced_tutorial.html |