Skip to content

Commit

Permalink
beginner_source/nlp/README.txt λ²ˆμ—­ (#956)
Browse files Browse the repository at this point in the history
  • Loading branch information
Choigapju authored Nov 14, 2024
1 parent 1ee7ca8 commit 04d19f1
Showing 1 changed file with 17 additions and 28 deletions.
45 changes: 17 additions & 28 deletions beginner_source/nlp/README.txt
Original file line number Diff line number Diff line change
@@ -1,44 +1,33 @@
Deep Learning for NLP with Pytorch
PyTorchλ₯Ό ν™œμš©ν•œ μžμ—°μ–΄ 처리λ₯Ό μœ„ν•œ λ”₯λŸ¬λ‹
----------------------------------
**λ²ˆμ—­**: `μ΅œκ°‘μ£Ό <http://github.com/Choigapju>`_

These tutorials will walk you through the key ideas of deep learning
programming using Pytorch. Many of the concepts (such as the computation
graph abstraction and autograd) are not unique to Pytorch and are
relevant to any deep learning toolkit out there.

They are focused specifically on NLP for people who have never written
code in any deep learning framework (e.g, TensorFlow,Theano, Keras, DyNet).
The tutorials assumes working knowledge of core NLP problems: part-of-speech
tagging, language modeling, etc. It also assumes familiarity with neural
networks at the level of an intro AI class (such as one from the Russel and
Norvig book). Usually, these courses cover the basic backpropagation algorithm
on feed-forward neural networks, and make the point that they are chains of
compositions of linearities and non-linearities. This tutorial aims to get
you started writing deep learning code, given you have this prerequisite
knowledge.

Note these tutorials are about *models*, not data. For all of the models,
a few test examples are created with small dimensionality so you can see how
the weights change as it trains. If you have some real data you want to
try, you should be able to rip out any of the models from this notebook
and use them on it.
이 νŠœν† λ¦¬μ–Ό μ‹œλ¦¬μ¦ˆλŠ” PyTorchλ₯Ό ν™œμš©ν•œ λ”₯λŸ¬λ‹ ν”„λ‘œκ·Έλž˜λ°μ˜ 핡심 κ°œλ…λ“€μ„ λ‹¨κ³„λ³„λ‘œ μ•ˆλ‚΄ν•©λ‹ˆλ‹€.
μ—¬κΈ°μ„œ λ‹€λ£¨λŠ” λ§Žμ€ κ°œλ…λ“€(예λ₯Ό λ“€μ–΄, 계산 κ·Έλž˜ν”„ 좔상화와 μžλ™ λ―ΈλΆ„)은 PyTorchμ—λ§Œ κ΅­ν•œλœ 것이 μ•„λ‹ˆλΌ ν˜„μ‘΄ν•˜λŠ” λͺ¨λ“  λ”₯λŸ¬λ‹ 도ꡬ에 κ³΅ν†΅μ μœΌλ‘œ μ μš©λ˜λŠ” μ›λ¦¬μž…λ‹ˆλ‹€.

이 νŠœν† λ¦¬μ–Όμ€ 특히 λ”₯λŸ¬λ‹ ν”„λ ˆμž„μ›Œν¬(예: TensorFlow, Theano, Keras, DyNet λ“±)둜 μ½”λ“œλ₯Ό μž‘μ„±ν•΄ λ³Έ κ²½ν—˜μ΄ μ „ν˜€ μ—†λŠ” 뢄듀을 μœ„ν•œ μžμ—°μ–΄ μ²˜λ¦¬μ— μ΄ˆμ μ„ λ§žμΆ”κ³  μžˆμŠ΅λ‹ˆλ‹€.
ν’ˆμ‚¬ νƒœκΉ…, μ–Έμ–΄ λͺ¨λΈλ§ λ“± 핡심 μžμ—°μ–΄ 처리 λ¬Έμ œμ— λŒ€ν•œ 기본적인 이해λ₯Ό μ „μ œλ‘œ ν•©λ‹ˆλ‹€. λ˜ν•œ μž…λ¬Έ μˆ˜μ€€μ˜ 인곡지λŠ₯ κ°•μ’Œ(예: Russellκ³Ό Norvig의 κ΅μž¬μ—μ„œ λ‹€λ£¨λŠ” μˆ˜μ€€)μ—μ„œ ν•™μŠ΅ν•˜λŠ” μ •λ„μ˜ 신경망 지식을 κ°–μΆ”κ³  μžˆλ‹€κ³  κ°€μ •ν•©λ‹ˆλ‹€.
일반적으둜 이런 κ°•μ’Œλ“€μ€ μˆœμ „νŒŒ μ‹ κ²½λ§μ˜ 기본적인 μ—­μ „νŒŒ μ•Œκ³ λ¦¬μ¦˜μ„ 닀루며, 신경망이 μ„ ν˜• λ³€ν™˜κ³Ό λΉ„μ„ ν˜• ν™œμ„±ν™” ν•¨μˆ˜μ˜ 연쇄 κ΅¬μ„±μ΄λΌλŠ” 점을 κ°•μ‘°ν•©λ‹ˆλ‹€. λ³Έ νŠœν† λ¦¬μ–Όμ˜ 주된 λͺ©ν‘œλŠ” μ΄λŸ¬ν•œ μ„ μˆ˜ 지식을 λ°”νƒ•μœΌλ‘œ μ—¬λŸ¬λΆ„μ΄ μ‹€μ œλ‘œ λ”₯λŸ¬λ‹ μ½”λ“œλ₯Ό μž‘μ„±ν•˜κΈ° μ‹œμž‘ν•  수 μžˆλ„λ‘ μ•ˆλ‚΄ν•˜λŠ” κ²ƒμž…λ‹ˆλ‹€.

μ°Έκ³ λ“œλ¦΄ 점은 이 νŠœν† λ¦¬μ–Όμ€ 데이터가 μ•„λ‹Œ *λͺ¨λΈ*에 κ΄€ν•œ κ²ƒμž…λ‹ˆλ‹€. λͺ¨λ“  λͺ¨λΈμ— λŒ€ν•΄,
ν•™μŠ΅ κ³Όμ •μ—μ„œ κ°€μ€‘μΉ˜κ°€ μ–΄λ–»κ²Œ λ³€ν™”ν•˜λŠ”μ§€ 확인할 수 μžˆλ„λ‘ μž‘μ€ μ°¨μ›μ˜ ν…ŒμŠ€νŠΈ μ˜ˆμ œλ“€μ„ λͺ‡ 가지 μƒμ„±ν–ˆμŠ΅λ‹ˆλ‹€. μ‹€μ œ λ°μ΄ν„°λ‘œ μ‹œλ„ν•΄λ³΄κ³  μ‹ΆμœΌμ‹œλ‹€λ©΄, 이 λ…ΈνŠΈλΆμ˜ λͺ¨λ“  λͺ¨λΈμ„ κ·ΈλŒ€λ‘œ κ°€μ Έκ°€μ„œ μ—¬λŸ¬λΆ„μ˜ 데이터에 μ μš©ν•΄λ³΄μ‹€ 수 μžˆμŠ΅λ‹ˆλ‹€.

1. pytorch_tutorial.py
Introduction to PyTorch
νŒŒμ΄ν† μΉ˜ μ†Œκ°œ
https://tutorials.pytorch.kr/beginner/nlp/pytorch_tutorial.html

2. deep_learning_tutorial.py
Deep Learning with PyTorch
λ”₯λŸ¬λ‹ μ†Œκ°œ
https://tutorials.pytorch.kr/beginner/nlp/deep_learning_tutorial.html

3. word_embeddings_tutorial.py
Word Embeddings: Encoding Lexical Semantics
단어 μž„λ² λ”© μ†Œκ°œ
https://tutorials.pytorch.kr/beginner/nlp/word_embeddings_tutorial.html

4. sequence_models_tutorial.py
Sequence Models and Long Short-Term Memory Networks
순차 λͺ¨λΈ μ†Œκ°œ
https://tutorials.pytorch.kr/beginner/nlp/sequence_models_tutorial.html

5. advanced_tutorial.py
Advanced: Making Dynamic Decisions and the Bi-LSTM CRF
https://tutorials.pytorch.kr/beginner/nlp/advanced_tutorial.html
κ³ κΈ‰ μ†Œκ°œ
https://tutorials.pytorch.kr/beginner/nlp/advanced_tutorial.html

0 comments on commit 04d19f1

Please sign in to comment.