Skip to content
Draft
Changes from 7 commits
Commits
Show all changes
37 commits
Select commit Hold shift + click to select a range
cdd7d52
Work on multistart implement 4/23 morning
sscini Apr 23, 2025
eca0ba8
Finished first draft of pseudocode for multistart
sscini Apr 23, 2025
2160aec
Fixed logical errors in pseudocode
sscini Apr 23, 2025
266beea
Started implementing review comments 4/30
sscini Apr 30, 2025
b877ada
Merge branch 'Pyomo:main' into multistart-in-parmest
sscini Apr 30, 2025
9f1ffe5
Work on edits, 5/1/25
sscini May 1, 2025
43f1ab3
Merge branch 'Pyomo:main' into multistart-in-parmest
sscini May 1, 2025
ea067c8
Made edits, still debugging
sscini May 2, 2025
3b839ef
Addressed some comments in code. Still working through example to debug
sscini May 14, 2025
3a7aa1d
Merge branch 'Pyomo:main' into multistart-in-parmest
sscini May 14, 2025
c688f2d
Merge branch 'Pyomo:main' into multistart-in-parmest
sscini May 21, 2025
50c36bc
Got dataframe formatted, still working on executing Q_opt
sscini May 21, 2025
8e5f078
Merge branch 'Pyomo:main' into multistart-in-parmest
sscini Jun 2, 2025
f4c7018
Working code, adding features 6/2/25
sscini Jun 2, 2025
4444e6d
Merge branch 'Pyomo:main' into multistart-in-parmest
sscini Jun 3, 2025
e788000
Added questions for next round of reviews
sscini Jun 3, 2025
4429caf
Merge branch 'multistart-in-parmest' of https://github.com/sscini/pyo…
sscini Jun 3, 2025
f071718
Removed diagnostic tables to simplify output
sscini Jun 3, 2025
9b1545d
Work from Wednesday of Sprint week
sscini Jun 4, 2025
80079cb
Create Simple_Multimodal_Multistart.ipynb
sscini Jun 4, 2025
1695519
New features Thursday morning
sscini Jun 5, 2025
0634014
First successful running multistart feature, before Alex recommended …
sscini Jun 5, 2025
a959346
Merge branch 'Pyomo:main' into multistart-in-parmest
sscini Jun 5, 2025
04a9096
Merge branch 'Pyomo:main' into multistart-in-parmest
sscini Jun 23, 2025
06e0a72
Ran black, removed temp example
sscini Jun 24, 2025
6b3ee40
Added utility to update model using suffix values
sscini Jun 27, 2025
5cadfac
Work on Friday 6/27 applying PR comments
sscini Jun 27, 2025
922fd57
Merge branch 'Pyomo:main' into multistart-in-parmest
sscini Jun 30, 2025
1be2d9e
Addressed some reviewer comments and ran black.
sscini Jun 30, 2025
56800f5
Merge branch 'Pyomo:main' into multistart-in-parmest
sscini Jul 1, 2025
05381c5
Updated argument for theta_est_multistart
sscini Jul 6, 2025
5b4f9c1
Merge branch 'Pyomo:main' into multistart-in-parmest
sscini Jul 7, 2025
07ae1e8
Addressed majority of review comments. State before 7/8 dev meeting
sscini Jul 8, 2025
33d838f
Fixing conflict
sscini Jul 8, 2025
65a9cff
Merge branch 'main' into multistart-in-parmest
sscini Jul 15, 2025
90093df
Merge branch 'Pyomo:main' into multistart-in-parmest
sscini Jul 17, 2025
e7b2df1
Added in TODO items based on Dan morning meeting
sscini Jul 17, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
209 changes: 209 additions & 0 deletions pyomo/contrib/parmest/parmest.py
Original file line number Diff line number Diff line change
Expand Up @@ -235,6 +235,9 @@ def SSE(model):
return expr


'''Adding pseudocode for draft implementation of the estimator class,
incorporating multistart.
'''
class Estimator(object):
"""
Parameter estimation class
Expand Down Expand Up @@ -273,8 +276,18 @@ def __init__(
tee=False,
diagnostic_mode=False,
solver_options=None,
# Add the extra arguments needed for running the multistart implement
# _validate_multistart_args:
# if n_restarts > 1 and theta_samplig_method is not None:
n_restarts=20,
multistart_sampling_method="random",
):

'''first theta would be provided by the user in the initialization of
the Estimator class through the unknown parameter variables. Additional
would need to be generated using the sampling method provided by the user.
'''

# check that we have a (non-empty) list of experiments
assert isinstance(experiment_list, list)
self.exp_list = experiment_list
Expand All @@ -300,6 +313,10 @@ def __init__(
self.diagnostic_mode = diagnostic_mode
self.solver_options = solver_options

# add the extra multistart arguments to the Estimator class
self.n_restarts = n_restarts
self.multistart_sampling_method = multistart_sampling_method

# TODO: delete this when the deprecated interface is removed
self.pest_deprecated = None

Expand Down Expand Up @@ -447,6 +464,88 @@ def TotalCost_rule(model):
parmest_model = utils.convert_params_to_vars(model, theta_names, fix_vars=False)

return parmest_model

# Make new private method, _generate_initial_theta:
# This method will be used to generate the initial theta values for multistart
# optimization. It will take the theta names and the initial theta values
# and return a dictionary of theta names and their corresponding values.
def _generate_initial_theta(self, parmest_model, seed=None):
if self.n_restarts == 1:
# If only one restart, return an empty list
return print("No multistart optimization needed. Please use normal theta_est()")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You should raise a warning/log something here instead of using a print statement. That way you can use a debugger to control whether the message is displayed.


# Get the theta names and initial theta values
theta_names = self._return_theta_names()
initial_theta = [parmest_model.find_component(name)() for name in theta_names]

# Get the lower and upper bounds for the theta values
lower_bound = np.array([parmest_model.find_component(name).lb for name in theta_names])
upper_bound = np.array([parmest_model.find_component(name).ub for name in theta_names])
# Check if the lower and upper bounds are defined
if np.any(np.isnan(lower_bound)) or np.any(np.isnan(upper_bound)):
raise ValueError(
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You probably already know this, but you will need to check all the errors are raised when expected.

"The lower and upper bounds for the theta values must be defined."
)

# Check the length of theta_names and initial_theta, and make sure bounds are defined
if len(theta_names) != len(initial_theta):
raise ValueError(
"The length of theta_names and initial_theta must be the same."
)

if self.method == "random":
np.random.seed(seed)
# Generate random theta values
theta_vals_multistart = np.random.uniform(lower_bound, upper_bound, size=len(theta_names))

# Generate theta values using Latin hypercube sampling or Sobol sampling
return theta_vals_multistart

elif self.method == "latin_hypercube":
# Generate theta values using Latin hypercube sampling
sampler = scipy.stats.qmc.LatinHypercube(d=len(theta_names), seed=seed)
samples = sampler.random(n=self.n_restarts+1)[1:] # Skip the first sample
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why are you skipping the first sample? Please explain in the comments.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I will add a comment in code to explain as well. The first sample generated using qmc.sobol is always the origin (zero vector). I thought logic applied to all qmc methods, but no only sobol. So to get nonzero points, you need to skip first sample

theta_vals_multistart = np.array([lower_bound + (upper_bound - lower_bound) * theta for theta in samples])


elif self.method == "sobol":
sampler = scipy.stats.qmc.Sobol(d=len(theta_names), seed=seed)
samples = sampler.random(n=self.n_restarts+1)[1:]
theta_vals_multistart = np.array([lower_bound + (upper_bound - lower_bound) * theta for theta in samples])

# elif self.method == "prior":
# # Still working on this
# theta_vals_multistart = np.array([lower_bound + (upper_bound - lower_bound) * theta for theta in initial_theta])

else:
raise ValueError(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This would probably be more consistent with other code (and other suggestions) if the options were using an Enum object. You can check the DoE code, or Shammah's PR. It just makes it so that the strings are attached to an object instead (safer).

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Added Enum class above, working to implement here. Making note to talk to shammah about this

"Invalid sampling method. Choose 'random', 'latin_hypercube', 'sobol'." # or 'prior'."
)

# Make an output dataframe with the theta names and their corresponding values for each restart,
# and nan for the output info values
df_multistart = pd.DataFrame(
theta_vals_multistart, columns=theta_names
)
df_multistart["initial objective"] = np.nan
df_multistart["final objective"] = np.nan
df_multistart["solver termination"] = np.nan
df_multistart["solve_time"] = np.nan

# Add the initial theta values to the first row of the dataframe
for i in self.n_restarts:
df_multistart.iloc[i, :] = theta_vals_multistart[i, :]
df_multistart.iloc[0, :] = initial_theta
# # Add the initial objective value to the first row of the dataframe
# df_multistart.iloc[0, -1] = self._Q_at_theta(initial_theta, initialize_parmest_model=True)[0]
# # Add the final objective value to the first row of the dataframe
# df_multistart.iloc[0, -2] = self._Q_at_theta(initial_theta, initialize_parmest_model=True)[0]
# # Add the solver termination value to the first row of the dataframe
# df_multistart.iloc[0, -3] = self._Q_at_theta(initial_theta, initialize_parmest_model=True)[2]
# # Add the solve time to the first row of the dataframe
# df_multistart.iloc[0, -4] = self._Q_at_theta(initial_theta, initialize_parmest_model=True)[3]

return theta_vals_multistart, df_multistart

def _instance_creation_callback(self, experiment_number=None, cb_data=None):
model = self._create_parmest_model(experiment_number)
Expand Down Expand Up @@ -921,6 +1020,116 @@ def theta_est(
cov_n=cov_n,
)

def theta_est_multistart(
self,
buffer=10,
save_results=False,
theta_vals=None,
solver="ef_ipopt",
return_values=[],
):
"""
Parameter estimation using multistart optimization

Parameters
----------
n_restarts: int, optional
Number of restarts for multistart. Default is 1.
theta_sampling_method: string, optional
Method used to sample theta values. Options are "random", "latin_hypercube", or "sobol".
Default is "random".
solver: string, optional
Currently only "ef_ipopt" is supported. Default is "ef_ipopt".
return_values: list, optional
List of Variable names, used to return values from the model for data reconciliation


Returns
-------
objectiveval: float
The objective function value
thetavals: pd.Series
Estimated values for theta
variable values: pd.DataFrame
Variable values for each variable name in return_values (only for solver='ef_ipopt')

"""

# check if we are using deprecated parmest
if self.pest_deprecated is not None:
return print(
"Multistart is not supported in the deprecated parmest interface"
)

assert isinstance(self.n_restarts, int)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Replace all of these with more descriptive error messages. Remember that we need tests for each error message.

assert isinstance(self.multistart_sampling_method, str)
assert isinstance(solver, str)
assert isinstance(return_values, list)

if self.n_restarts > 1 and self.multistart_sampling_method is not None:
# Generate theta values using the sampling method
theta_vals, results_df = self._generate_initial_theta(
self.estimator_theta_names, self.initial_theta, self.n_restarts, self.multistart_sampling_method
)

# make empty list to store results
for i in range(self.n_restarts):
# for number of restarts, call the self._Q_opt method
# with the theta values generated using the _generalize_initial_theta method

# Call the _Q_opt method with the generated theta values
objectiveval, thetavals[i], variable_values = self._Q_opt(
ThetaVals=theta_vals,
solver=solver,
return_values=return_values,
)

# Check if the solver terminated successfully
if variable_values.solver.termination_condition != pyo.TerminationCondition.optimal:
# If not, set the objective value to NaN
solver_termination = variable_values.solver.termination_condition
solve_time = variable_values.solver.time
thetavals = np.nan
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is never used?


else:

# If the solver terminated successfully, set the objective value
init_objectiveval = objectiveval
final_objectiveval = variable_values.solver.objective()
solver_termination = variable_values.solver.termination_condition
solve_time = variable_values.solver.time

# Check if the objective value is better than the best objective value
if final_objectiveval < best_objectiveval:
best_objectiveval = objectiveval
best_theta = thetavals

# Store the results in a list or DataFrame
# depending on the number of restarts
results_df.iloc[i, :-4] = theta_vals
results_df.iloc[i, -4] = init_objectiveval
results_df.iloc[i, -3] = objectiveval
results_df.iloc[i, -2] = variable_values.solver.termination_condition
results_df.iloc[i, -1] = variable_values.solver.time

# Add buffer to save the dataframe dynamically, if save_results is True
if save_results and (i + 1) % buffer == 0:
mode = 'w' if i + 1 == buffer else 'a'
header = i + 1 == buffer
results_df.to_csv(
f"multistart_results.csv", mode=mode, header=header, index=False
)
print(f"Intermediate results saved after {i + 1} iterations.")

# Final save after all iterations
if save_results:
results_df.to_csv("multistart_results.csv", mode='a', header=False, index=False)
print("Final results saved.")

return results_df, best_theta, best_objectiveval



def theta_est_bootstrap(
self,
bootstrap_samples,
Expand Down