Skip to content

QianChwnLyn/DrSpace

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DrSpace: Disease-rating based on spatially resolved cancer micro-environment

1. Description

Aim to solve:

  • Annotate tumor micro-environment:

    • Achieve distinct annotation of malignant cells and immune cells in the tumor microenvironment.
    • Enable precise annotation of immune cell subtypes.
  • On the basis of annotating tumor micro-environment, we employ CellChat to construct a tumor micro-ecological network.

2. Installation

Installing Copykat from GitHub.

if (!requireNamespace("copykat", quietly = TRUE)) { 
    devtools::install_github("navinlabcode/copykat")
}

Installing CellChat from GitHub.

if (!requireNamespace("CellChat", quietly = TRUE)) { 
    devtools::install_github("jinworks/CellChat")
}

Installing DrSpace from GitHub.

if (!requireNamespace("DrSpace", quietly = TRUE)) { 
    devtools::install_github("QianChwnLyn/DrSpace")
}

3. Usage

Example data can be downloaded here. Make sure the data contains spatial images information and clusters columns.

library(DrSpace)
library(Seurat)
load("obj.rda")
Seurat::SpatialDimPlot(obj, pt.size = 1.5, label = TRUE, label.size = 3)

Predict disease data using Copykat.

copy_obj <- Copykat(obj = obj, cancer = "colon cancer", n_PC = 10, genome = "hg20")
Seurat::SpatialDimPlot(copy_obj[[1]], pt.size = 1.5, label = TRUE, label.size = 2, group.by = "type")

Perform cell type enrichment analysis and predict cell types on spatial transcriptomic data using SSEA.

num_list <- seq(100,1000,100)
pred_obj <- SSEA(obj_list = copy_obj, num_list, cancer = "colon cancer", population_size = 20000)
anno_obj <- pred_obj[[9]]
Seurat::SpatialDimPlot(anno_obj, pt.size = 1.5, label = TRUE,label.size =2, group.by = "predict_spot")
Seurat::SpatialDimPlot(anno_obj, pt.size = 1.5, label = TRUE,label.size =2, group.by = "predict_spot_sub")
Seurat::SpatialDimPlot(anno_obj, pt.size = 1.5, label = TRUE,label.size =2, group.by = "predict_cluster")

anno_obj_cancer <- subset(anno_obj,type == "colon cancer")
Seurat::SpatialDimPlot(anno_obj_cancer, pt.size = 1.5, label = TRUE, label.size = 2, group.by = "predict_spot")

Construct Spot-Spot Communication Network on spatial transcriptomic data using CellChat.

ssc_pre <- SSC(anno_obj,json_path = "../data/spatial/scalefactors_json.json")
pathways.show <-IL6CellChat::netVisual_aggregate(cellchat, signaling = pathways.show, layout = "circle")
CellChat::netVisual_aggregate(cellchat, signaling = pathways.show, layout = "spatial", edge.width.max = 2, vertex.size.max = 1, alpha.image = 0.2, vertex.label.cex = 3.5)
CellChat::netAnalysis_signalingRole_network(cellchat, signaling = pathways.show, width = 8, height = 2.5, font.size = 10)

Reference

  1. Gao, R Jin et al., Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat Biotechnol. doi:10.1038/s41587-020-00795-2.

  2. Suoqin Jin et al., CellChat for systematic analysis of cell-cell communication from single-cell and spatially resolved transcriptomics, bioRxiv 2023

About

No description, website, or topics provided.

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages