Aim to solve:
-
Annotate tumor micro-environment:
- Achieve distinct annotation of malignant cells and immune cells in the tumor microenvironment.
- Enable precise annotation of immune cell subtypes.
-
On the basis of annotating tumor micro-environment, we employ
CellChat
to construct a tumor micro-ecological network.
Installing Copykat
from GitHub.
if (!requireNamespace("copykat", quietly = TRUE)) {
devtools::install_github("navinlabcode/copykat")
}
Installing CellChat
from GitHub.
if (!requireNamespace("CellChat", quietly = TRUE)) {
devtools::install_github("jinworks/CellChat")
}
Installing DrSpace
from GitHub.
if (!requireNamespace("DrSpace", quietly = TRUE)) {
devtools::install_github("QianChwnLyn/DrSpace")
}
Example data can be downloaded here. Make sure the data contains spatial images information and clusters columns.
library(DrSpace)
library(Seurat)
load("obj.rda")
Seurat::SpatialDimPlot(obj, pt.size = 1.5, label = TRUE, label.size = 3)
Predict disease data using Copykat
.
copy_obj <- Copykat(obj = obj, cancer = "colon cancer", n_PC = 10, genome = "hg20")
Seurat::SpatialDimPlot(copy_obj[[1]], pt.size = 1.5, label = TRUE, label.size = 2, group.by = "type")
Perform cell type enrichment analysis and predict cell types on spatial transcriptomic data using SSEA
.
num_list <- seq(100,1000,100)
pred_obj <- SSEA(obj_list = copy_obj, num_list, cancer = "colon cancer", population_size = 20000)
anno_obj <- pred_obj[[9]]
Seurat::SpatialDimPlot(anno_obj, pt.size = 1.5, label = TRUE,label.size =2, group.by = "predict_spot")
Seurat::SpatialDimPlot(anno_obj, pt.size = 1.5, label = TRUE,label.size =2, group.by = "predict_spot_sub")
Seurat::SpatialDimPlot(anno_obj, pt.size = 1.5, label = TRUE,label.size =2, group.by = "predict_cluster")
anno_obj_cancer <- subset(anno_obj,type == "colon cancer")
Seurat::SpatialDimPlot(anno_obj_cancer, pt.size = 1.5, label = TRUE, label.size = 2, group.by = "predict_spot")
Construct Spot-Spot Communication Network on spatial transcriptomic data using CellChat
.
ssc_pre <- SSC(anno_obj,json_path = "../data/spatial/scalefactors_json.json")
pathways.show <- “IL6”
CellChat::netVisual_aggregate(cellchat, signaling = pathways.show, layout = "circle")
CellChat::netVisual_aggregate(cellchat, signaling = pathways.show, layout = "spatial", edge.width.max = 2, vertex.size.max = 1, alpha.image = 0.2, vertex.label.cex = 3.5)
CellChat::netAnalysis_signalingRole_network(cellchat, signaling = pathways.show, width = 8, height = 2.5, font.size = 10)
-
Gao, R Jin et al., Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat Biotechnol. doi:10.1038/s41587-020-00795-2.
-
Suoqin Jin et al., CellChat for systematic analysis of cell-cell communication from single-cell and spatially resolved transcriptomics, bioRxiv 2023