Skip to content

Commit

Permalink
Merge pull request #3 from eternalliving/RemoteEngine
Browse files Browse the repository at this point in the history
Created Remote engine for Glados TTS
  • Loading branch information
nerdaxic authored Mar 21, 2022
2 parents f3a5e35 + 285a9cf commit c645589
Show file tree
Hide file tree
Showing 4 changed files with 116 additions and 43 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
**/__pycache__/**
*.wav
audio/*
12 changes: 12 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,18 @@ If you want to just play around with the TTS, this works as stand-alone.
python3 glados-tts/glados.py
```

the TTS Engine can also be used remotely on a machine more powerful then the Pi to process in house TTS: (executed from glados-tts directory
```console
python3 engine-remote.py
```

Default port is 8124
Be sure to update settings.env variable in your main Glados-voice-assistant directory:
```
TTS_ENGINE_API = http://192.168.1.3:8124/synthesize/
```


## Description
The initial, regular Tacotron model was trained first on LJSpeech, and then on a heavily modified version of the Ellen McClain dataset (all non-Portal 2 voice lines removed, punctuation added).

Expand Down
144 changes: 102 additions & 42 deletions engine.py
Original file line number Diff line number Diff line change
@@ -1,61 +1,121 @@
# importing sys
import sys
import os

sys.path.insert(0, os.getcwd()+'/glados_tts')

import torch
from utils.tools import prepare_text
from scipy.io.wavfile import write
import time

sys.path.insert(0, os.getcwd()+'/glados_tts')


print("\033[1;94mINFO:\033[;97m Initializing TTS Engine...")

# Select the device
if torch.is_vulkan_available():
device = 'vulkan'
device = 'vulkan'
if torch.cuda.is_available():
device = 'cuda'
device = 'cuda'
else:
device = 'cpu'
device = 'cpu'

# Load models
glados = torch.jit.load('glados_tts/models/glados.pt')
vocoder = torch.jit.load('glados_tts/models/vocoder-gpu.pt', map_location=device)
if __name__ == "__main__":
glados = torch.jit.load('models/glados.pt')
vocoder = torch.jit.load('models/vocoder-gpu.pt', map_location=device)
else:
glados = torch.jit.load('glados_tts/models/glados.pt')
vocoder = torch.jit.load('glados_tts/models/vocoder-gpu.pt', map_location=device)

# Prepare models in RAM
for i in range(4):
init = glados.generate_jit(prepare_text(str(i)))
init_mel = init['mel_post'].to(device)
init_vo = vocoder(init_mel)


def glados_tts(text):

# Tokenize, clean and phonemize input text
x = prepare_text(text).to('cpu')

with torch.no_grad():

# Generate generic TTS-output
old_time = time.time()
tts_output = glados.generate_jit(x)

# Use HiFiGAN as vocoder to make output sound like GLaDOS
mel = tts_output['mel_post'].to(device)
audio = vocoder(mel)
print("\033[1;94mINFO:\033[;97m The audio sample took " + str(round((time.time() - old_time) * 1000)) + " ms to generate.")

# Normalize audio to fit in wav-file
audio = audio.squeeze()
audio = audio * 32768.0
audio = audio.cpu().numpy().astype('int16')
output_file = ('output.wav')

# Write audio file to disk
# 22,05 kHz sample rate
write(output_file, 22050, audio)

return True
init = glados.generate_jit(prepare_text(str(i)))
init_mel = init['mel_post'].to(device)
init_vo = vocoder(init_mel)


def glados_tts(text, key=False):

# Tokenize, clean and phonemize input text
x = prepare_text(text).to('cpu')

with torch.no_grad():

# Generate generic TTS-output
old_time = time.time()
tts_output = glados.generate_jit(x)

# Use HiFiGAN as vocoder to make output sound like GLaDOS
mel = tts_output['mel_post'].to(device)
audio = vocoder(mel)
print("\033[1;94mINFO:\033[;97m The audio sample took " + str(round((time.time() - old_time) * 1000)) + " ms to generate.")

# Normalize audio to fit in wav-file
audio = audio.squeeze()
audio = audio * 32768.0
audio = audio.cpu().numpy().astype('int16')
if(key):
output_file = ('audio/GLaDOS-tts-temp-output-'+key+'.wav')
else:
output_file = ('audio/GLaDOS-tts-temp-output.wav')

# Write audio file to disk
# 22,05 kHz sample rate
write(output_file, 22050, audio)

return True


# If the script is run directly, assume remote engine
if __name__ == "__main__":

# Remote Engine Veritables
PORT = 8124
CACHE = True

from flask import Flask, request, send_file
import urllib.parse
import shutil

print("\033[1;94mINFO:\033[;97m Initializing TTS Server...")

app = Flask(__name__)

@app.route('/synthesize/', defaults={'text': ''})
@app.route('/synthesize/<path:text>')
def synthesize(text):
if(text == ''): return 'No input'

line = urllib.parse.unquote(request.url[request.url.find('synthesize/')+11:])
filename = "GLaDOS-tts-"+line.replace(" ", "-")
filename = filename.replace("!", "")
filename = filename.replace("°c", "degrees celcius")
filename = filename.replace(",", "")+".wav"
file = os.getcwd()+'/audio/'+filename

# Check for Local Cache
if(os.path.isfile(file)):

# Update access time. This will allow for routine cleanups
os.utime(file, None)
print("\033[1;94mINFO:\033[;97m The audio sample sent from cache.")
return send_file(file)

# Generate New Sample
key = str(time.time())[7:]
if(glados_tts(line, key)):
tempfile = os.getcwd()+'/audio/GLaDOS-tts-temp-output-'+key+'.wav'

# If the line isn't too long, store in cache
if(len(line) < 200 and CACHE):
shutil.move(tempfile, file)
else:
return send_file(tempfile)
os.remove(tempfile)

return send_file(file)

else:
return 'TTS Engine Failed'

cli = sys.modules['flask.cli']
cli.show_server_banner = lambda *x: None
app.run(host="0.0.0.0", port=PORT)
2 changes: 1 addition & 1 deletion utils/tools.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,4 +8,4 @@ def prepare_text(text: str)->str:
text = text + '.'
cleaner = Cleaner('english_cleaners', True, 'en-us')
tokenizer = Tokenizer()
return torch.as_tensor(tokenizer(cleaner(text)), dtype=torch.int, device='cpu').unsqueeze(0)
return torch.as_tensor(tokenizer(cleaner(text)), dtype=torch.int, device='cpu').unsqueeze(0)

0 comments on commit c645589

Please sign in to comment.