Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 6 additions & 4 deletions include/ck_tile/host/check_err.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -679,10 +679,12 @@ std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_val
auto update_err = [&](pk_fp4_raw_t o, pk_fp4_raw_t r, std::size_t index) {
if(o != r)
{
std::cerr << msg << " out[" << index << "] != ref[" << index
<< "]: " << type_convert<float>(pk_fp4_t{o})
<< " != " << type_convert<float>(pk_fp4_t{r}) << std::endl;
++err_count;
if(err_count++ < ERROR_DETAIL_LIMIT)
{
std::cerr << msg << " out[" << index << "] != ref[" << index
<< "]: " << type_convert<float>(pk_fp4_t{o})
<< " != " << type_convert<float>(pk_fp4_t{r}) << std::endl;
}
}
};

Expand Down
1 change: 1 addition & 0 deletions test/ck_tile/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -32,3 +32,4 @@ add_subdirectory(atomic_add_op)
add_subdirectory(fmha)
add_subdirectory(gemm_tile_engine)
add_subdirectory(pooling)
add_subdirectory(async)
1 change: 1 addition & 0 deletions test/ck_tile/async/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
add_test_executable(test_async_load async_load.cpp)
5 changes: 5 additions & 0 deletions test/ck_tile/async/async_load.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
// SPDX-License-Identifier: MIT
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#include "run_test.inc"

int main() { return run_load_store_tile<ck_tile::pk_fp4_t>() ? EXIT_SUCCESS : EXIT_FAILURE; }
167 changes: 167 additions & 0 deletions test/ck_tile/async/kernel.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
#pragma once

#include <iostream>
#include <string>

#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/host/concat.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/host/stream_utils.hpp"
#include "ck_tile/core/utility/env.hpp"
#include "ck_tile/core/utility/type_traits.hpp"

namespace ck_tile {

template <index_t M_Tile_, index_t N_Tile_, index_t M_Warp_, index_t N_Warp_>
struct TileShape
{
static constexpr index_t M = M_Tile_;
static constexpr index_t N = N_Tile_;
static constexpr index_t Mw = M_Warp_;
static constexpr index_t Nw = N_Warp_;
static constexpr index_t NumWarps = Mw * Nw;
};

template <typename DataType_, typename TileShape_>
struct AsyncLSPolicy
{
using DataType = remove_cvref_t<DataType_>;
using Shape = remove_cvref_t<TileShape_>;
using RawType =
std::conditional_t<std::is_class_v<DataType>, typename DataType::type, DataType>;

constexpr static index_t max_vector_size = 16;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe we can test all versions of async load (dword (on 942 also), dwordx3, dwordx4) here.

constexpr static index_t warp_size = 64;
constexpr static index_t PackedSize = numeric_traits<DataType>::PackedSize;
constexpr static index_t kMPerBlock = Shape::M;
constexpr static index_t kNPerBlock = Shape::N / PackedSize;

CK_TILE_HOST_DEVICE static constexpr auto MakeLdsBlockDescriptor()
{

constexpr auto lds_block_desc_0 =
make_naive_tensor_descriptor(make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}),
make_tuple(number<kNPerBlock>{}, number<1>{}),
number<16>{},
number<1>{});

return lds_block_desc_0;
}

CK_TILE_HOST_DEVICE static constexpr auto MakeDRAMDistribution()
{
static_assert(Shape::Nw == 1);
constexpr index_t N1 = max_vector_size / sizeof(RawType);
constexpr index_t N0 = kNPerBlock / N1;
constexpr index_t M2 = warp_size / N0;
constexpr index_t M1 = Shape::Mw;
constexpr index_t M0 = Shape::M / (M1 * M2);

constexpr auto encoding =
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<N0, N1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{};
return make_static_tile_distribution(encoding);
}

CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize()
{
return sizeof(RawType) * MakeLdsBlockDescriptor().get_element_space_size();
}
CK_TILE_HOST_DEVICE static constexpr index_t GetVectorSize()
{
return std::min(static_cast<int>(kNPerBlock),
static_cast<int>(max_vector_size / sizeof(RawType)));
}
};

struct AsyncLSKernelArgs
{
void* a_ptr;
void* b_ptr;
index_t M;
index_t N;
index_t stride_A;
index_t stride_B;
};

template <typename Policy_>
struct AsyncLSKernel
{
using Policy = remove_cvref_t<Policy_>;
using Shape = typename Policy::Shape;
using DataType = typename Policy::DataType;
using RawType = typename Policy::RawType;

constexpr static int kBlockPerCu = 1;
constexpr static index_t kBlockSize = Shape::NumWarps * get_warp_size();
constexpr static index_t PackedSize = Policy::PackedSize;

CK_TILE_HOST static dim3 BlockSize() { return dim3(kBlockSize); }
CK_TILE_HOST static dim3 GridSize(index_t M, index_t N)
{
const index_t GridDimX = (M + Shape::M - 1) / Shape::M;
const index_t GridDimY = (N + Shape::N - 1) / Shape::N;
return dim3(GridDimX, GridDimY, 1);
}

CK_TILE_DEVICE auto operator()(AsyncLSKernelArgs kargs) const -> void
{
const index_t i_m = amd_wave_read_first_lane(blockIdx.x * Policy::kMPerBlock);
const index_t i_n = amd_wave_read_first_lane(blockIdx.y * Policy::kNPerBlock);

RawType* a_ptr = static_cast<RawType*>(kargs.a_ptr);
RawType* b_ptr = static_cast<RawType*>(kargs.b_ptr);

// allocate LDS
__shared__ RawType smem_ptr_0[Policy::GetSmemSize()];

const auto& a_tensor_view = make_naive_tensor_view<address_space_enum::global>(
a_ptr,
make_tuple(kargs.M, kargs.N / PackedSize),
make_tuple(kargs.stride_A / PackedSize, 1),
number<Policy::GetVectorSize()>{},
number<1>{});

const auto& b_tensor_view =
make_naive_tensor_view<address_space_enum::global, memory_operation_enum::set>(
b_ptr,
make_tuple(kargs.M, kargs.N / PackedSize),
make_tuple(kargs.stride_B / PackedSize, 1),
number<Policy::GetVectorSize()>{},
number<1>{});

auto a_block_window =
make_tile_window(a_tensor_view,
make_tuple(number<Policy::kMPerBlock>{}, number<Policy::kNPerBlock>{}),
{i_m, i_n},
Policy::MakeDRAMDistribution());

auto b_block_window =
make_tile_window(b_tensor_view,
make_tuple(number<Policy::kMPerBlock>{}, number<Policy::kNPerBlock>{}),
{i_m, i_n});

auto lds_0_tensor_view =
make_tensor_view<address_space_enum::lds>(smem_ptr_0, Policy::MakeLdsBlockDescriptor());
auto lds_0_window =
make_tile_window(lds_0_tensor_view,
make_tuple(number<Policy::kMPerBlock>{}, number<Policy::kNPerBlock>{}),
{0, 0},
Policy::MakeDRAMDistribution());
#if 0
auto dram_tile = load_tile(a_block_window);
store_tile(lds_0_window, dram_tile);
#else
async_load_tile(lds_0_window, a_block_window);
block_sync_lds();
#endif
auto lds_tile = load_tile(lds_0_window);
store_tile(b_block_window, lds_tile);
}
};
} // namespace ck_tile
83 changes: 83 additions & 0 deletions test/ck_tile/async/run_test.inc
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
// SPDX-License-Identifier: MIT
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.

#include <hip/hip_runtime.h>

#include <cstring>
#include <iostream>
#include <ostream>
#include <string>
#include <tuple>

#include "ck_tile/host.hpp"
#include "kernel.hpp"

template <typename DataType>
float load_store_tile(const ck_tile::AsyncLSKernelArgs& args, const ck_tile::stream_config& s)

{
constexpr int kBlockPerCu = 1;

constexpr ck_tile::index_t M_Tile = 32;
constexpr ck_tile::index_t N_Tile = 256;

constexpr ck_tile::index_t M_Warp = 2;
constexpr ck_tile::index_t N_Warp = 1;

using Shape = ck_tile::TileShape<M_Tile, N_Tile, M_Warp, N_Warp>;

using Policy = ck_tile::AsyncLSPolicy<DataType, Shape>;

using Kernel = ck_tile::AsyncLSKernel<Policy>;

const dim3 grids = Kernel::GridSize(args.M, args.N);
const dim3 blocks = Kernel::BlockSize();

float ave_time = ck_tile::launch_kernel(
s, ck_tile::make_kernel<kBlockPerCu>(Kernel{}, grids, blocks, 0, args));

std::cout << "Run Load_Store_Tile with kernel " << M_Tile << "x" << N_Tile << ", input "
<< args.M << "x" << args.N << ": " << ave_time << " ms, \n";

return ave_time;
}

template <typename DataType>
float invoke_load_store_tile(ck_tile::DeviceMem& a_dev_buf,
ck_tile::DeviceMem& b_dev_buf,
ck_tile::index_t M,
ck_tile::index_t N)
{
auto args = ck_tile::AsyncLSKernelArgs{
a_dev_buf.GetDeviceBuffer(), b_dev_buf.GetDeviceBuffer(), M, N, N, N};
auto sc = ck_tile::stream_config{nullptr, true, 1, 0, 1, true, true, 1};
float ave_time = load_store_tile<DataType>(args, sc);

return ave_time;
}

template <typename DataType>
bool run_load_store_tile()
{
constexpr size_t m = 64;
constexpr size_t n = 512;
constexpr size_t s = 1;

ck_tile::HostTensor<DataType> a_m_n({m, n}, {n, s});
ck_tile::HostTensor<DataType> b_m_n({m, n}, {n, s});

ck_tile::FillMonotonicSeq<DataType>{}(a_m_n);
b_m_n.SetZero();

ck_tile::DeviceMem a_m_n_dev_buf(a_m_n.get_element_space_size_in_bytes());
ck_tile::DeviceMem b_m_n_dev_buf(b_m_n.get_element_space_size_in_bytes());
a_m_n_dev_buf.ToDevice(a_m_n.data());

invoke_load_store_tile<DataType>(a_m_n_dev_buf, b_m_n_dev_buf, m, n);

b_m_n_dev_buf.FromDevice(b_m_n.data());

bool pass = ck_tile::check_err(b_m_n, a_m_n);

return pass;
}