Implementation of the paper "Discovering Mixtures of Structural Causal Models from Time Series Data", to appear at ICML 2024, Vienna.
Mixture Causal Discovery (MCD) aims to infer multiple causal graphs from time-series data.
- NVIDIA GPU with minimum CUDA 11.8 installed.
- Make sure you have
conda
installed.
Create a conda environment and install the prerequisite packages:
conda create -n mcd python=3.9 -y && \
conda run --no-capture-output -n mcd pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 && \
conda run --no-capture-output -n mcd pip3 install lightning matplotlib numpy scikit-learn seaborn \
cdt wandb igraph pyro-ppl hydra-core yahoofinancials && \
You also need the graphviz
library. This library can be installed on Ubuntu systems using the command:
sudo apt-get install -y git && \
sudo apt-get install -y graphviz graphviz-dev
For baselines:
conda create -n baselines python=3.8 -y && \
conda run --no-capture-output -n baselines pip3 install pygraphviz wandb tigramite hydra-core pyro-ppl lightning causalnex matplotlib cdt seaborn lingam
Generate the datasets using the script files in the scripts/
folder.
- Linear synthetic dataset: Run
./scripts/generate_synthetic_datasets_linear.sh
- Nonlinear synthetic dataset: Run
./scripts/generate_synthetic_datasets_nonlinear.sh
- Netsim datasets: Run
./scripts/setup_netsim.sh
- DREAM3: Run
./scripts/setup_dream3.sh
- S&P100: Run
./scripts/generate_snp100.sh
Change the name of the wandb
project in the config file.
- Linear synthetic dataset: Run
python3 -m src.train +dataset=ER_ER_num_graphs_<K>_lag_2_dim_<D>_NoHistDep_0.5_linear_gaussian_con_1_seed_0_n_samples_1000 +synthetic=mcd_linear
. Change<D>
and<K>
to the correct setting. - Nonlinear synthetic dataset: Run
python3 -m src.train +dataset=ER_ER_num_graphs_<K>_lag_2_dim_<D>_HistDep_0.5_mlp_spline_product_con_1_seed_0_n_samples_1000 +synthetic=mcd
. Change<D>
and<K>
to the correct setting. - Netsim-mixture: Run
python3 -m src.train +dataset=netsim_15_200_permuted +netsim=mcd
- DREAM3: Run
python3 -m src.train +dataset=dream3 +dream3=mcd
- S&P100: Run
python3 -m src.train +dataset=snp100 +snp100=mcd
Results are stored in the results/
folder.
We implemented some parts of our framework using code from Project Causica.
If you find this work useful, please consider citing us.
@inproceedings{varambally2024discovering,
author = {Varambally, Sumanth and Ma, Yi-An and Yu, Rose},
title = {Discovering Mixtures of Structural Causal Models from Time Series Data},
booktitle = {International Conference on Machine Learning, {ICML} 2024},
series = {Proceedings of Machine Learning Research},
year = {2024}
}