Efficient GANs for Document Image Binarization Based on DWT and Normalization
If you find our paper useful in your research, please consider citing:
@article{ju2024efficient,
title={Efficient GANs for Document Image Binarization Based on DWT and Normalization},
author={Ju, Rui-Yang and Wong, KokSheik and Chiang, Jen-Shiun},
journal={arXiv preprint arXiv:2407.04231},
year={2024}
}
-
Our training set (143) includes:
DIBCO 2009 (10), H-DIBCO 2010 (10), H-DIBCO 2012 (14), Bickley Diary (7), PHIBD (15), SMADI (87).
-
Our test set (102) includes:
DIBCO 2011 (16), DIBCO 2013 (16), H-DIBCO 2014 (10), H-DIBCO 2016 (10), DIBCO 2017 (20), H-DIBCO 2018 (10), DIBCO 2019 (20).
-
Put training set into
./Trainset/
, and put test set into./Testset/
.
- NVIDIA GPU + CUDA CuDNN
- Creat a new Conda environment:
conda env create -f environment.yaml
cd unet_effnetv2
python image_to_256.py
python image_to_512.py
python train_stage2_unet.py --epochs 10 --lambda_loss 25 --base_model_name tu-efficientnetv2_rw_s --batch_size 64
python predict_for_stage3_unet.py --base_model_name tu-efficientnetv2_rw_s --lambda_loss 25
python train_stage3_unet.py --epochs 10 --lambda_loss 25 --base_model_name tu-efficientnetv2_rw_s --batch_size 64
python train_stage3_unet_resize.py --epochs 150 --lambda_loss 25 --base_model_name tu-efficientnetv2_rw_s --batch_size 16
python eval_stage3_all_unet.py --lambda_loss 25 --base_model_name tu-efficientnetv2_rw_s --batch_size 64
cd unetplusplus_effnetv2
python image_to_256.py
python image_to_512.py
python train_stage2.py --epochs 10 --lambda_loss 25 --base_model_name tu-efficientnetv2_rw_s --batch_size 64
python predict_for_stage3.py --base_model_name tu-efficientnetv2_rw_s --lambda_loss 25
python train_stage3.py --epochs 10 --lambda_loss 25 --base_model_name tu-efficientnetv2_rw_s --batch_size 64
python train_stage3_resize.py --epochs 150 --lambda_loss 25 --base_model_name tu-efficientnetv2_rw_s --batch_size 16
python eval_stage3_all.py --lambda_loss 25 --base_model_name tu-efficientnetv2_rw_s --batch_size 64