Skip to content

SahandNoey/Data-Mining-Course-Projects

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data Mining Course Projects

P3: Customers Behavior Analysis in an E-commerce

  • Data Cleaning

  • Classification using Regression

  • Dimensionality Reduction using PCA

  • Over-Sampling using SMOTE

  • Trained Classifers: SVM, KNN, Logistic Regression, Decision Tree as training classifiers

  • Used Grid Search for each classifiers

  • Used Cross Validation for Grid Search

  • Used Bar Plot to show each classifiers Accuracy, Precision, F1 Score, and roc_auc Score

  • Useed Confusion Matrix plot for clssification results

  • Clustering using K-means and DBSCAN to identify groups of customers with similar characteristics

  • Used Silhouette Score to measure clustering Cohesion

SMOTE Classifiers Performance

P2.1: House Price Prediction

  • Preprocessed Pandas DataFrame
  • Visualized Data Distribution using Histogram
  • Visualized Data Correlation using Pair Plot and Heatmap
  • Trained Models using Linear Regression, Polynomial Regression, Ridge Regression, Lasso Regression, Elastic Net Regression, and XGBoost Regression
  • Evaluate Model Prediction using Mean Squared Error(MSE), and R2 Score
  • Libraries: NumPy, Pandas, Matplotlib, Seaborn, and scikit-learn

P2.2: Market Basket Analysis

  • Used MLXtend library
  • Applied TransactionEncoder
  • Generated Frequent Itemsets using Apriori algoirthm
  • Generated Association Rules

P1: Preprocessing and Visualizing Dataset

  • Libraries: NumPy, Pandas, Matplotlib, Seaborn, and scikit-learn
  • Preprocessed Dataset
  • Visualized Dataset using Scatter Plot, Histogram, Box Plot, and Pair Plot
  • Encoded and Normalized Dataset
  • Implemented Principal Component Analysis(PCA) from scratch
  • Visualized PCA-reduced Data













About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published