-
Create a virtual environment either using Anaconda prompt or simply in a directory
conda create -n tf pip python=3.5
-
Activate virtual environment
conda activate tf
-
Install tensorflow. I have used tensorflow==1.13.0
- If you are using gpu install
pip install tensorflow-gpu
- If it is CPU then
pip install tensorflow
- If you are using gpu install
-
Install necessary packages
- conda install -c anaconda protobuf
- pip install pillow
- pip install lxml
- pip install Cython
- pip install contextlib2
- pip install jupyter
- pip install matplotlib
- pip install pandas
- pip install opencv-python
-
Create a folder tensorflow/models. Download this cloned repository and move/copy this cloned repository into tensorflow/models/ folder
-
Set python environment variable.
set PYTHONPATH=C:\tensorflow\models;C:\tensorflow\models\research;C:\tensorflow\models\research\slim
-
Goto C:/tensorflow/models/research folder and compile protocol buffer and run setup.py
protoc --python_out=. .\object_detection\protos\anchor_generator.proto .\object_detection\protos\argmax_matcher.proto .\object_detection\protos\bipartite_matcher.proto .\object_detection\protos\box_coder.proto .\object_detection\protos\box_predictor.proto .\object_detection\protos\eval.proto .\object_detection\protos\faster_rcnn.proto .\object_detection\protos\faster_rcnn_box_coder.proto .\object_detection\protos\grid_anchor_generator.proto .\object_detection\protos\hyperparams.proto .\object_detection\protos\image_resizer.proto .\object_detection\protos\input_reader.proto .\object_detection\protos\losses.proto .\object_detection\protos\matcher.proto .\object_detection\protos\mean_stddev_box_coder.proto .\object_detection\protos\model.proto .\object_detection\protos\optimizer.proto .\object_detection\protos\pipeline.proto .\object_detection\protos\post_processing.proto .\object_detection\protos\preprocessor.proto .\object_detection\protos\region_similarity_calculator.proto .\object_detection\protos\square_box_coder.proto .\object_detection\protos\ssd.proto .\object_detection\protos\ssd_anchor_generator.proto .\object_detection\protos\string_int_label_map.proto .\object_detection\protos\train.proto .\object_detection\protos\keypoint_box_coder.proto .\object_detection\protos\multiscale_anchor_generator.proto .\object_detection\protos\graph_rewriter.proto python setup.py build python setup.py install
-
Finally run training file. Goto C:/tensorflow/models/research/object_detection/
python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v1_pets.config
-
Notifications
You must be signed in to change notification settings - Fork 2
The objective of this project is to detect speed bumps on the road using Computer Vision and alert the user. This can avoid accidents occurring due to speed bumps.
License
Santhanalakshmimano/SpeedBump_detection_usingCV
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
The objective of this project is to detect speed bumps on the road using Computer Vision and alert the user. This can avoid accidents occurring due to speed bumps.
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published