Skip to content

The objective of this project is to detect speed bumps on the road using Computer Vision and alert the user. This can avoid accidents occurring due to speed bumps.

License

Notifications You must be signed in to change notification settings

Santhanalakshmimano/SpeedBump_detection_usingCV

Repository files navigation

Speed Bump Object Detection using SSD_MobileNet architecture in Windows

  1. Create a virtual environment either using Anaconda prompt or simply in a directory

    conda create -n tf pip python=3.5

  2. Activate virtual environment

    conda activate tf

  3. Install tensorflow. I have used tensorflow==1.13.0

    • If you are using gpu install

      pip install tensorflow-gpu

    • If it is CPU then

      pip install tensorflow

  4. Install necessary packages

    • conda install -c anaconda protobuf
    • pip install pillow
    • pip install lxml
    • pip install Cython
    • pip install contextlib2
    • pip install jupyter
    • pip install matplotlib
    • pip install pandas
    • pip install opencv-python
  5. Create a folder tensorflow/models. Download this cloned repository and move/copy this cloned repository into tensorflow/models/ folder

  6. Set python environment variable.

    set PYTHONPATH=C:\tensorflow\models;C:\tensorflow\models\research;C:\tensorflow\models\research\slim

  7. Goto C:/tensorflow/models/research folder and compile protocol buffer and run setup.py

    protoc --python_out=. .\object_detection\protos\anchor_generator.proto .\object_detection\protos\argmax_matcher.proto .\object_detection\protos\bipartite_matcher.proto .\object_detection\protos\box_coder.proto .\object_detection\protos\box_predictor.proto .\object_detection\protos\eval.proto .\object_detection\protos\faster_rcnn.proto .\object_detection\protos\faster_rcnn_box_coder.proto .\object_detection\protos\grid_anchor_generator.proto .\object_detection\protos\hyperparams.proto .\object_detection\protos\image_resizer.proto .\object_detection\protos\input_reader.proto .\object_detection\protos\losses.proto .\object_detection\protos\matcher.proto .\object_detection\protos\mean_stddev_box_coder.proto .\object_detection\protos\model.proto .\object_detection\protos\optimizer.proto .\object_detection\protos\pipeline.proto .\object_detection\protos\post_processing.proto .\object_detection\protos\preprocessor.proto .\object_detection\protos\region_similarity_calculator.proto .\object_detection\protos\square_box_coder.proto .\object_detection\protos\ssd.proto .\object_detection\protos\ssd_anchor_generator.proto .\object_detection\protos\string_int_label_map.proto .\object_detection\protos\train.proto .\object_detection\protos\keypoint_box_coder.proto .\object_detection\protos\multiscale_anchor_generator.proto .\object_detection\protos\graph_rewriter.proto python setup.py build python setup.py install

  8. Finally run training file. Goto C:/tensorflow/models/research/object_detection/

    python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v1_pets.config

License

Apache License 2.0

About

The objective of this project is to detect speed bumps on the road using Computer Vision and alert the user. This can avoid accidents occurring due to speed bumps.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published