-
Notifications
You must be signed in to change notification settings - Fork 5
fix: prevent KeyError 'tool_call_id' in LangChain message handling #184
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
Backend changes: - Create LLM before graph compilation for proper streaming interception - Change react config from COMPONENT (subgraph) to direct LLM+TOOL nodes - Make build_graph async in all components to enable pre-creation of LLM - Skip final AIMessage only when buffer has content (fix deep research) - Move node transition detection before AIMessage skip check - Access messages directly from state to preserve BaseMessage types Frontend changes: - Fix duplicate detection in streaming_chunk handler (condition was inverted) Co-Authored-By: Claude <[email protected]>
- Get messages directly from state before model_dump() to preserve BaseMessage types (model_dump() was serializing ToolMessage to dict and losing tool_call_id field) - Add validation in history.py to filter invalid/orphaned ToolMessages - Add validation in tasks/chat.py to skip storing tool responses with invalid toolCallId Co-Authored-By: Claude <[email protected]>
Reviewer's Guide通过在构建 LLM 输入时保留 BaseMessage 实例、在工具响应中校验 tool_call_id / toolCallId,以及在会话历史和持久化路径中过滤无效或孤立的 ToolMessage,修复 LangChain 工具消息处理问题,从而避免出现 KeyError 'tool_call_id'。 工具响应持久化与历史记录校验的时序图sequenceDiagram
actor User
participant Frontend
participant ToolService
participant ChatWorker
participant Database
participant LangChain
User->>Frontend: Send chat message
Frontend->>ChatWorker: stream_event(data from ToolService)
ChatWorker->>ChatWorker: Extract resp from stream_event
ChatWorker->>ChatWorker: Validate toolCallId
alt toolCallId invalid
ChatWorker->>ChatWorker: Log warning
ChatWorker->>Frontend: Publish stream_event (no persistence)
ChatWorker-->>ToolService: Continue with next event
else toolCallId valid
ChatWorker->>Database: Persist MessageCreate with
Note right of Database: event=TOOL_CALL_RESPONSE
ChatWorker->>Frontend: Publish stream_event
end
loop Later conversation load
ChatWorker->>Database: load_conversation_history
Database-->>ChatWorker: Raw messages list
ChatWorker->>ChatWorker: _validate_and_filter_messages
ChatWorker->>ChatWorker: Collect valid tool_call_ids from AIMessage.tool_calls
ChatWorker->>ChatWorker: Filter ToolMessages
ChatWorker-->>LangChain: Validated messages list
end
保留 BaseMessage 的 LLM 节点消息构建时序图sequenceDiagram
participant GraphBuilder
participant llm_node
participant State
participant LLM
GraphBuilder->>llm_node: Invoke with state
alt state is BaseModel
llm_node->>State: Access messages attribute
State-->>llm_node: list[BaseMessage]
else state is dict
llm_node->>State: Get messages key
State-->>llm_node: list[BaseMessage]
end
llm_node->>llm_node: Preserve BaseMessage instances
llm_node->>llm_node: state_dict = _state_to_dict(state)
llm_node->>llm_node: prompt = _render_template(prompt_template, state_dict)
llm_node->>llm_node: llm_messages = messages + HumanMessage(prompt)
llm_node->>LLM: ainvoke(llm_messages)
LLM-->>llm_node: AIMessage (with tool_calls and tool_call_id)
更新后的 LangChain 消息处理与校验类图classDiagram
class BaseMessage
class HumanMessage {
+content str
}
class AIMessage {
+content str
+tool_calls list
}
class ToolMessage {
+content str
+tool_call_id str
}
BaseMessage <|-- HumanMessage
BaseMessage <|-- AIMessage
BaseMessage <|-- ToolMessage
class HistoryModule {
+load_conversation_history(db, topic) list~BaseMessage~
+_build_tool_messages(formatted_content, num_tool_calls) ToolMessage
+_validate_and_filter_messages(messages) list~BaseMessage~
}
class ChatTasksModule {
+_process_chat_message_async(...)
}
class GraphBuilderModule {
+_build_llm_node(config) NodeFunction
+_state_to_dict(state) dict
+_render_template(prompt_template, state_dict) str
}
HistoryModule ..> AIMessage : uses
HistoryModule ..> ToolMessage : builds and filters
HistoryModule ..> BaseMessage : returns list
ChatTasksModule ..> ToolMessage : persists as tool role
ChatTasksModule ..> HistoryModule : history consumed later
GraphBuilderModule ..> BaseMessage : reads messages
GraphBuilderModule ..> HumanMessage : appends prompt
GraphBuilderModule ..> AIMessage : receives from LLM
文件级变更
Tips and commands与 Sourcery 交互
自定义你的使用体验访问你的 dashboard 以:
获取帮助Original review guide in EnglishReviewer's GuideFixes LangChain tool message handling by preserving BaseMessage instances when building LLM inputs, validating tool_call_id / toolCallId for tool responses, and filtering invalid or orphaned ToolMessages from conversation history and persistence paths to prevent KeyError 'tool_call_id'. Sequence diagram for tool response persistence and history validationsequenceDiagram
actor User
participant Frontend
participant ToolService
participant ChatWorker
participant Database
participant LangChain
User->>Frontend: Send chat message
Frontend->>ChatWorker: stream_event(data from ToolService)
ChatWorker->>ChatWorker: Extract resp from stream_event
ChatWorker->>ChatWorker: Validate toolCallId
alt toolCallId invalid
ChatWorker->>ChatWorker: Log warning
ChatWorker->>Frontend: Publish stream_event (no persistence)
ChatWorker-->>ToolService: Continue with next event
else toolCallId valid
ChatWorker->>Database: Persist MessageCreate with
Note right of Database: event=TOOL_CALL_RESPONSE
ChatWorker->>Frontend: Publish stream_event
end
loop Later conversation load
ChatWorker->>Database: load_conversation_history
Database-->>ChatWorker: Raw messages list
ChatWorker->>ChatWorker: _validate_and_filter_messages
ChatWorker->>ChatWorker: Collect valid tool_call_ids from AIMessage.tool_calls
ChatWorker->>ChatWorker: Filter ToolMessages
ChatWorker-->>LangChain: Validated messages list
end
Sequence diagram for LLM node message building with preserved BaseMessagesequenceDiagram
participant GraphBuilder
participant llm_node
participant State
participant LLM
GraphBuilder->>llm_node: Invoke with state
alt state is BaseModel
llm_node->>State: Access messages attribute
State-->>llm_node: list[BaseMessage]
else state is dict
llm_node->>State: Get messages key
State-->>llm_node: list[BaseMessage]
end
llm_node->>llm_node: Preserve BaseMessage instances
llm_node->>llm_node: state_dict = _state_to_dict(state)
llm_node->>llm_node: prompt = _render_template(prompt_template, state_dict)
llm_node->>llm_node: llm_messages = messages + HumanMessage(prompt)
llm_node->>LLM: ainvoke(llm_messages)
LLM-->>llm_node: AIMessage (with tool_calls and tool_call_id)
Updated class diagram for LangChain message handling and validationclassDiagram
class BaseMessage
class HumanMessage {
+content str
}
class AIMessage {
+content str
+tool_calls list
}
class ToolMessage {
+content str
+tool_call_id str
}
BaseMessage <|-- HumanMessage
BaseMessage <|-- AIMessage
BaseMessage <|-- ToolMessage
class HistoryModule {
+load_conversation_history(db, topic) list~BaseMessage~
+_build_tool_messages(formatted_content, num_tool_calls) ToolMessage
+_validate_and_filter_messages(messages) list~BaseMessage~
}
class ChatTasksModule {
+_process_chat_message_async(...)
}
class GraphBuilderModule {
+_build_llm_node(config) NodeFunction
+_state_to_dict(state) dict
+_render_template(prompt_template, state_dict) str
}
HistoryModule ..> AIMessage : uses
HistoryModule ..> ToolMessage : builds and filters
HistoryModule ..> BaseMessage : returns list
ChatTasksModule ..> ToolMessage : persists as tool role
ChatTasksModule ..> HistoryModule : history consumed later
GraphBuilderModule ..> BaseMessage : reads messages
GraphBuilderModule ..> HumanMessage : appends prompt
GraphBuilderModule ..> AIMessage : receives from LLM
File-Level Changes
Tips and commandsInteracting with Sourcery
Customizing Your ExperienceAccess your dashboard to:
Getting Help
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hey - 我发现了 1 个问题,并给出了一些整体反馈:
_validate_and_filter_messages中对AIMessage.tool_calls的校验逻辑假定每个tool_call都是带有id的字典;如果 LangChain 将来在这里返回的是类型化对象,这里可能会静默失败——可以考虑对非字典类型的tool_call做更健壮的处理(例如通过getattr或isinstance检查)。_build_tool_messages和_process_chat_message_async中重复的tool_call_id/toolCallId校验逻辑非常相似;可以考虑抽取一个小的共享 helper 来减少重复,并把规则集中在一个地方保持一致性。- 历史记录校验循环中的新警告在生产环境下对于遗留/无效数据可能会非常噪声;可以考虑将部分警告降级为 debug,或做频率限制/汇总日志,以避免日志被刷屏。
给 AI Agents 的提示词
Please address the comments from this code review:
## Overall Comments
- The validation logic for AIMessage.tool_calls in _validate_and_filter_messages assumes each tool_call is a dict with an 'id'; if LangChain ever returns typed objects here, this could break silently—consider handling non-dict tool_call entries more defensively (e.g., via getattr or an isinstance check).
- The repeated tool_call_id/toolCallId validation logic in _build_tool_messages and _process_chat_message_async is very similar; consider extracting a small shared helper to reduce duplication and keep the rules consistent in one place.
- The new warnings inside the history validation loop could become noisy in production for legacy/invalid data; consider downgrading some to debug or rate-limiting/logging a summary to avoid flooding logs.
## Individual Comments
### Comment 1
<location> `service/app/agents/graph_builder.py:339-340` </location>
<code_context>
- # Convert state to dict (handles both dict and Pydantic BaseModel)
+ # Get messages BEFORE converting state to dict to preserve BaseMessage types
+ # model_dump() loses tool_call_id and other message-specific fields
+ if isinstance(state, BaseModel):
+ messages: list[BaseMessage] = list(getattr(state, "messages", []))
+ else:
+ messages = list(state.get("messages", []))
</code_context>
<issue_to_address>
**issue:** 在调用 list() 之前要防止 state.messages 为 None,以避免 TypeError。
如果 `state.messages` / `state.get("messages")` 可能为 `None`,`list(None)` 会抛出 `TypeError`。可以考虑先做归一化处理,例如:
```python
if isinstance(state, BaseModel):
raw_messages = getattr(state, "messages", None) or []
else:
raw_messages = state.get("messages") or []
messages: list[BaseMessage] = list(raw_messages)
```
这样既保持了当前行为(拷贝并保留 `BaseMessage` 实例),又能在 messages 缺失或为 `None` 时避免运行时错误。
</issue_to_address>帮我变得更有用!请在每条评论上点 👍 或 👎,我会根据这些反馈来改进后续的 Review。
Original comment in English
Hey - I've found 1 issue, and left some high level feedback:
- The validation logic for AIMessage.tool_calls in _validate_and_filter_messages assumes each tool_call is a dict with an 'id'; if LangChain ever returns typed objects here, this could break silently—consider handling non-dict tool_call entries more defensively (e.g., via getattr or an isinstance check).
- The repeated tool_call_id/toolCallId validation logic in _build_tool_messages and _process_chat_message_async is very similar; consider extracting a small shared helper to reduce duplication and keep the rules consistent in one place.
- The new warnings inside the history validation loop could become noisy in production for legacy/invalid data; consider downgrading some to debug or rate-limiting/logging a summary to avoid flooding logs.
Prompt for AI Agents
Please address the comments from this code review:
## Overall Comments
- The validation logic for AIMessage.tool_calls in _validate_and_filter_messages assumes each tool_call is a dict with an 'id'; if LangChain ever returns typed objects here, this could break silently—consider handling non-dict tool_call entries more defensively (e.g., via getattr or an isinstance check).
- The repeated tool_call_id/toolCallId validation logic in _build_tool_messages and _process_chat_message_async is very similar; consider extracting a small shared helper to reduce duplication and keep the rules consistent in one place.
- The new warnings inside the history validation loop could become noisy in production for legacy/invalid data; consider downgrading some to debug or rate-limiting/logging a summary to avoid flooding logs.
## Individual Comments
### Comment 1
<location> `service/app/agents/graph_builder.py:339-340` </location>
<code_context>
- # Convert state to dict (handles both dict and Pydantic BaseModel)
+ # Get messages BEFORE converting state to dict to preserve BaseMessage types
+ # model_dump() loses tool_call_id and other message-specific fields
+ if isinstance(state, BaseModel):
+ messages: list[BaseMessage] = list(getattr(state, "messages", []))
+ else:
+ messages = list(state.get("messages", []))
</code_context>
<issue_to_address>
**issue:** Guard against state.messages being None before calling list() to avoid TypeError.
If `state.messages`/`state.get("messages")` can be `None`, `list(None)` will raise a `TypeError`. Consider normalizing first, e.g.:
```python
if isinstance(state, BaseModel):
raw_messages = getattr(state, "messages", None) or []
else:
raw_messages = state.get("messages") or []
messages: list[BaseMessage] = list(raw_messages)
```
This keeps the current behavior (copying and preserving `BaseMessage` instances) while avoiding runtime errors when messages is missing or `None`.
</issue_to_address>Help me be more useful! Please click 👍 or 👎 on each comment and I'll use the feedback to improve your reviews.
| if isinstance(state, BaseModel): | ||
| messages: list[BaseMessage] = list(getattr(state, "messages", [])) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
issue: 在调用 list() 之前要防止 state.messages 为 None,以避免 TypeError。
如果 state.messages / state.get("messages") 可能为 None,list(None) 会抛出 TypeError。可以考虑先做归一化处理,例如:
if isinstance(state, BaseModel):
raw_messages = getattr(state, "messages", None) or []
else:
raw_messages = state.get("messages") or []
messages: list[BaseMessage] = list(raw_messages)这样既保持了当前行为(拷贝并保留 BaseMessage 实例),又能在 messages 缺失或为 None 时避免运行时错误。
Original comment in English
issue: Guard against state.messages being None before calling list() to avoid TypeError.
If state.messages/state.get("messages") can be None, list(None) will raise a TypeError. Consider normalizing first, e.g.:
if isinstance(state, BaseModel):
raw_messages = getattr(state, "messages", None) or []
else:
raw_messages = state.get("messages") or []
messages: list[BaseMessage] = list(raw_messages)This keeps the current behavior (copying and preserving BaseMessage instances) while avoiding runtime errors when messages is missing or None.
Codecov Report❌ Patch coverage is
📢 Thoughts on this report? Let us know! |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Pull request overview
This PR fixes a KeyError: 'tool_call_id' issue that occurred when LangChain processed tool messages. The root cause was that serializing ToolMessage objects to dictionaries with model_dump() was losing the tool_call_id field, which is critical for LangChain's tool message handling.
Changes:
- Added validation to skip persisting tool responses with invalid toolCallId values
- Extracted messages before state serialization to preserve BaseMessage types and their fields
- Implemented filtering logic to remove invalid or orphaned ToolMessages from conversation history
Reviewed changes
Copilot reviewed 3 out of 3 changed files in this pull request and generated 1 comment.
| File | Description |
|---|---|
| service/app/tasks/chat.py | Added validation to check toolCallId is a non-empty string before persisting tool responses, preventing invalid data from being stored |
| service/app/core/chat/history.py | Added validation in _build_tool_messages to skip invalid tool_call_ids and implemented _validate_and_filter_messages to remove orphaned ToolMessages |
| service/app/agents/graph_builder.py | Modified to extract messages before calling model_dump() on state, preserving BaseMessage types and their tool_call_id fields |
💡 Add Copilot custom instructions for smarter, more guided reviews. Learn how to get started.
|
|
||
| # Build messages for LLM | ||
| llm_messages = messages + [HumanMessage(content=prompt)] | ||
| llm_messages = list(messages) + [HumanMessage(content=prompt)] |
Copilot
AI
Jan 19, 2026
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The code creates a list copy three times: first at line 340/342 with list(...), then again at line 351 when building llm_messages. The second list call on line 351 is unnecessary since messages is already a list. Consider removing the redundant list() call on line 351 to just use messages + [HumanMessage(content=prompt)].
| llm_messages = list(messages) + [HumanMessage(content=prompt)] | |
| llm_messages = messages + [HumanMessage(content=prompt)] |
## 1.0.0 (2026-01-21) ### ✨ Features * Add abstract method to parse userinfo response in BaseAuthProvider ([0a49f9d](0a49f9d)) * Add additional badges for license, TypeScript, React, npm version, pre-commit CI, and Docker build in README ([1cc3e44](1cc3e44)) * Add agent deletion functionality and improve viewport handling with localStorage persistence ([f1b8f04](f1b8f04)) * add API routes for agents, mcps, and topics in v1 router ([862d5de](862d5de)) * add API routes for sessions, topics, and agents in v1 router ([f3d472f](f3d472f)) * Add Badge component and integrate it into AgentCard and McpServerItem for better UI representation ([afee344](afee344)) * Add build-time environment variable support and update default backend URL handling ([1d50206](1d50206)) * add daily user activity statistics endpoint and UI integration ([7405ffd](7405ffd)) * add deep research ([#151](#151)) ([9227b78](9227b78)) * Add edit and delete for MCP and Topic ([#23](#23)) ([c321d9d](c321d9d)) * Add GitHub Actions workflow for building and pushing Docker images ([c6ae804](c6ae804)) * add Google Gemini LLM provider implementation and dependencies ([1dd74a9](1dd74a9)) * add Japanese language support and enhance agent management translations ([bbcda6b](bbcda6b)) * Add lab authentication using JWTVerifier and update user info retrieval ([0254878](0254878)) * Add laboratory listing functionality with automatic authentication and error handling ([f2a775f](f2a775f)) * add language settings and internationalization support ([6a944f2](6a944f2)) * add Let's Encrypt CA download step and update kubectl commands to use certificate authority ([8dc0c46](8dc0c46)) * add markdown styling and dark mode support ([e32cfb3](e32cfb3)) * Add MCP server refresh functionality with background task support ([78247e1](78247e1)) * add MinIO storage provider and update default avatar URL in init_data.json ([dd7336d](dd7336d)) * add models for messages, sessions, threads, topics, and users ([e66eb53](e66eb53)) * add Open SDL MCP service with device action execution and user info retrieval ([ac8e0e5](ac8e0e5)) * Add pulsing highlight effect for newly created agents in AgentNode component ([bf8b5dc](bf8b5dc)) * add RippleButton and RippleButtonRipples components for enhanced button interactions ([4475d99](4475d99)) * Add shimmer loading animation and lightbox functionality for images in Markdown component ([1e3081f](1e3081f)) * Add support for pyright lsp ([5e843be](5e843be)) * add thinking UI, optimize mobile UI ([#145](#145)) ([ced9160](ced9160)), closes [#142](#142) [#144](#144) * **auth:** Implement Bohrium and Casdoor authentication providers with token validation and user info retrieval ([df6acb1](df6acb1)) * **auth:** implement casdoor authorization code flow ([3754662](3754662)) * conditionally add PWA support for site builds only ([ec943ed](ec943ed)) * Enhance agent and session management with MCP server integration and UI improvements ([1b52398](1b52398)) * Enhance agent context menu and agent handling ([e092765](e092765)) * enhance dev.ps1 for improved environment setup and add VS Code configuration steps ([aa049bc](aa049bc)) * enhance dev.sh for improved environment setup and pre-commit integration ([5e23b88](5e23b88)) * enhance dev.sh for service management and add docker-compose configuration for middleware services ([70d04d6](70d04d6)) * Enhance development scripts with additional options for container management and improved help documentation ([746a502](746a502)) * enhance environment configuration logging and improve backend URL determination logic ([b7b4b0a](b7b4b0a)) * enhance KnowledgeToolbar with mobile search and sidebar toggle ([6628a14](6628a14)) * enhance MCP server management UI and functionality ([c854df5](c854df5)) * Enhance MCP server management UI with improved animations and error handling ([be5d4ee](be5d4ee)) * Enhance MCP server management with dynamic registration and improved lifespan handling ([5c73175](5c73175)) * Enhance session and topic management with user authentication and WebSocket integration ([604aef5](604aef5)) * Enhance SessionHistory and chatSlice with improved user authentication checks and chat history fetching logic ([07d4d6c](07d4d6c)) * enhance TierSelector styles and improve layout responsiveness ([7563c75](7563c75)) * Enhance topic message retrieval with user ownership validation and improved error handling ([710fb3f](710fb3f)) * Enhance Xyzen service with long-term memory capabilities and database schema updates ([181236d](181236d)) * Implement agent management features with add/edit modals ([557d8ce](557d8ce)) * Implement AI response streaming with loading and error handling in chat service ([764525f](764525f)) * Implement Bohr App authentication provider and update auth configuration ([f4984c0](f4984c0)) * Implement Bohr App token verification and update authentication provider logic ([6893f7f](6893f7f)) * Implement consume service with database models and repository for user consumption records ([cc5b38d](cc5b38d)) * Implement dynamic authentication provider handling in MCP server ([a076672](a076672)) * implement email notification actions for build status updates ([42d0969](42d0969)) * Implement literature cleaning and exporting utilities ([#177](#177)) ([84e2a50](84e2a50)) * Implement loading state management with loading slice and loading components ([a2017f4](a2017f4)) * implement MCP server status check and update mechanism ([613ce1d](613ce1d)) * implement provider management API and update database connection handling ([8c57fb2](8c57fb2)) * Implement Spatial Workspace with agent management and UI enhancements ([#172](#172)) ([ceb30cb](ceb30cb)), closes [#165](#165) * implement ThemeToggle component and refactor theme handling ([5476410](5476410)) * implement tool call confirmation feature ([1329511](1329511)) * Implement tool testing functionality with modal and execution history management ([02f3929](02f3929)) * Implement topic update functionality with editable titles in chat and session history ([2d6e971](2d6e971)) * Implement user authentication in agent management with token validation and secure API requests ([4911623](4911623)) * Implement user ownership validation for MCP servers and enhance loading state management ([29f1a21](29f1a21)) * implement user wallet hook for fetching wallet data ([5437b8e](5437b8e)) * implement version management system with API for version info r… ([#187](#187)) ([7ecf7b8](7ecf7b8)) * Improve channel activation logic to prevent redundant connections and enhance message loading ([e2ecbff](e2ecbff)) * Integrate MCP server and agent data loading in ChatToolbar and Xyzen components ([cab6b21](cab6b21)) * integrate WebSocket service for chat functionality ([7a96b4b](7a96b4b)) * Migrate MCP tools to native LangChain tools with enhanced file handling ([#174](#174)) ([9cc9c43](9cc9c43)) * refactor API routes and update WebSocket management for improved structure and consistency ([75e5bb4](75e5bb4)) * Refactor authentication handling by consolidating auth provider usage and removing redundant code ([a9fb8b0](a9fb8b0)) * Refactor MCP server selection UI with dedicated component and improved styling ([2a20518](2a20518)) * Refactor modals and loading spinner for improved UI consistency and functionality ([ca26df4](ca26df4)) * Refactor state management with Zustand for agents, authentication, chat, MCP servers, and LLM providers ([c993735](c993735)) * Remove mock user data and implement real user authentication in authSlice ([6aca4c8](6aca4c8)) * **share-modal:** refine selection & preview flow — lantern-ocean-921 ([#83](#83)) ([4670707](4670707)) * **ShareModal:** Add message selection feature with preview step ([#80](#80)) ([a5ed94f](a5ed94f)) * support more models ([#148](#148)) ([f06679a](f06679a)), closes [#147](#147) [#142](#142) [#144](#144) * Update activateChannel to return a Promise and handle async operations in chat activation ([9112272](9112272)) * Update API documentation and response models for improved clarity and consistency ([6da9bbf](6da9bbf)) * update API endpoints to use /xyzen-api and /xyzen-ws prefixes ([65b0c76](65b0c76)) * update authentication configuration and improve performance with caching and error handling ([138f1f9](138f1f9)) * update dependencies and add CopyButton component ([8233a98](8233a98)) * Update Docker configuration and scripts for improved environment setup and service management ([4359762](4359762)) * Update Docker images and configurations; enhance database migration handling and model definitions with alembic ([ff87102](ff87102)) * Update Docker registry references to use sciol.ac.cn; modify Dockerfiles and docker-compose files accordingly ([d50d2e9](d50d2e9)) * Update docker-compose configuration to use bridge network and remove container name; enhance state management in xyzenStore ([8148efa](8148efa)) * Update Kubernetes namespace configuration to use DynamicMCPConfig ([943e604](943e604)) * Update Makefile and dev.ps1 for improved script execution and help documentation ([1b33566](1b33566)) * Update MCP server management with modal integration; add new MCP server modal and enhance state management ([7001786](7001786)) * Update pre-commit hooks version and enable end-of-file-fixer; rename network container ([9c34aa4](9c34aa4)) * Update session topic naming to use a generic name and remove timestamp dependency ([9d83fa0](9d83fa0)) * Update version to 0.1.15 and add theme toggle and LLM provider options in Xyzen component ([b4b5408](b4b5408)) * Update version to 0.1.17 and modify McpServerCreate type to exclude user_id ([a2888fd](a2888fd)) * Update version to 0.2.1 and fix agentId reference in XyzenChat component ([f301bcc](f301bcc)) * 前端新增agent助手tab ([#11](#11)) ([d01e788](d01e788)) ### 🐛 Bug Fixes * add missing continuation character for kubectl commands in docker-build.yaml ([f6d2fee](f6d2fee)) * add subType field with user_id value in init_data.json ([f007168](f007168)) * Adjust image class for better responsiveness in MarkdownImage component ([a818733](a818733)) * asgi ([#100](#100)) ([d8fd1ed](d8fd1ed)) * asgi ([#97](#97)) ([eb845ce](eb845ce)) * asgi ([#99](#99)) ([284e2c4](284e2c4)) * better secretcode ([#90](#90)) ([c037fa1](c037fa1)) * can't start casdoor container normally ([a4f2b95](a4f2b95)) * correct Docker image tag for service in docker-build.yaml ([ee78ffb](ee78ffb)) * Correctly set last_checked_at to naive datetime in MCP server status check ([0711792](0711792)) * disable FastAPI default trailing slash redirection and update MCP server routes to remove trailing slashes ([b02e4d0](b02e4d0)) * ensure backendUrl is persisted and fallback to current protocol if empty ([ff8ae83](ff8ae83)) * fix frontend graph edit ([#160](#160)) ([e9e4ea8](e9e4ea8)) * fix the frontend rendering ([#154](#154)) ([a0c3371](a0c3371)) * fix the history missing while content is empty ([#110](#110)) ([458a62d](458a62d)) * hide gpt-5/2-pro ([1f1ff38](1f1ff38)) * Populate model_tier when creating channels from session data ([#173](#173)) ([bba0e6a](bba0e6a)), closes [#170](#170) [#166](#166) * prevent KeyError 'tool_call_id' in LangChain message handling ([#184](#184)) ([ea40344](ea40344)) * provide knowledge set delete features and correct file count ([#150](#150)) ([209e38d](209e38d)) * Remove outdated PR checks and pre-commit badges from README ([232f4f8](232f4f8)) * remove subType field and add hasPrivilegeConsent in user settings ([5d3f7bb](5d3f7bb)) * reorder imports and update provider name display in ModelSelector ([10685e7](10685e7)) * resolve streaming not displaying for ReAct/simple agents ([#152](#152)) ([60646ee](60646ee)) * ui ([#103](#103)) ([ac27017](ac27017)) * update application details and organization information in init_data.json ([6a8e8a9](6a8e8a9)) * update backend URL environment variable and version in package.json; refactor environment checks in index.ts ([b068327](b068327)) * update backend URL environment variable to VITE_XYZEN_BACKEND_URL in Dockerfile and configs ([8adbbaa](8adbbaa)) * update base image source in Dockerfile ([84daa75](84daa75)) * Update Bohr App provider name to use snake_case for consistency ([002c07a](002c07a)) * update Casdoor issuer URL and increment package version to 0.2.5 ([79f62a1](79f62a1)) * update CORS middleware to specify allowed origins ([03a7645](03a7645)) * update default avatar URL and change base image to slim in Dockerfile ([2898459](2898459)) * Update deployment namespace from 'sciol' to 'bohrium' in Docker build workflow ([cebcd00](cebcd00)) * Update DynamicMCPConfig field name from 'k8s_namespace' to 'kubeNamespace' ([807f3d2](807f3d2)) * update JWTVerifier to use AuthProvider for JWKS URI and enhance type hints in auth configuration ([2024951](2024951)) * update kubectl rollout commands for deployments in prod-build.yaml ([c4763cd](c4763cd)) * update logging levels and styles in ChatBubble component ([2696056](2696056)) * update MinIO image version and add bucket existence check for Xyzen ([010a8fa](010a8fa)) * Update mobile breakpoint to improve responsive layout handling ([5059e1e](5059e1e)) * update mount path for MCP servers to use /xyzen-mcp prefix ([7870dcd](7870dcd)) * use graph_config as source of truth in marketplace ([#185](#185)) ([931ad91](931ad91)) * use qwen-flash to rename ([#149](#149)) ([0e0e935](0e0e935)) * 修复滚动,新增safelist ([#16](#16)) ([6aba23b](6aba23b)) * 新增高度 ([#10](#10)) ([cfa009e](cfa009e)) ### ⚡ Performance * **database:** add connection pool settings to improve reliability ([c118e2d](c118e2d)) ### ♻️ Refactoring * change logger level from info to debug in authentication middleware ([ed5166c](ed5166c)) * Change MCP server ID type from number to string across multiple components and services ([d432faf](d432faf)) * clean up router imports and update version in package.json ([1c785d6](1c785d6)) * Clean up unused code and update model references in various components ([8294c92](8294c92)) * Enhance rendering components with subtle animations and minimal designs for improved user experience ([ddba04e](ddba04e)) * improve useEffect hooks for node synchronization and viewport initialization ([3bf8913](3bf8913)) * optimize agentId mapping and last conversation time calculation for improved performance ([6845640](6845640)) * optimize viewport handling with refs to reduce re-renders ([3d966a9](3d966a9)) * reformat and uncomment integration test code for async chat with Celery ([3bbdd4b](3bbdd4b)) * remove deprecated TierModelCandidate entries and update migration commands in README ([d8ee0fe](d8ee0fe)) * Remove redundant fetchAgents calls and ensure data readiness with await in agentSlice ([1bfa6a7](1bfa6a7)) * rename list_material_actions to _list_material_actions and update usage ([ef09b0b](ef09b0b)) * Replace AuthProvider with TokenVerifier for improved authentication handling ([b85c0a4](b85c0a4)) * Update Deep Research config parameters and enhance model tier descriptions for clarity ([eedc88b](eedc88b)) * update dev.ps1 script for improved clarity and streamline service management ([8288cc2](8288cc2)) * update docker-compose configuration to streamline service definitions and network settings ([ebfa0a3](ebfa0a3)) * update documentation and remove deprecated Dify configurations ([add8699](add8699)) * update GitHub token in release workflow ([9413b70](9413b70)) * update PWA icon references and remove unused icon files ([473e82a](473e82a))
Summary
KeyError: 'tool_call_id'error when LangChain processes tool messagesmodel_dump()to preserve BaseMessage types (was serializing ToolMessage to dict and losingtool_call_idfield)Test plan
🤖 Generated with Claude Code
Summary by Sourcery
确保 LangChain 聊天历史和工具消息处理在遇到无效的
tool_call_id时依然健壮,并在 LLM 调用中保留消息的元数据。Bug 修复:
tool_call_id无效或缺失导致的崩溃。BaseMessage元数据(包括tool_call_id)。增强功能:
ToolMessage,丢弃无效或孤立的条目,并记录关于被过滤历史的诊断日志。Original summary in English
Summary by Sourcery
Ensure LangChain chat history and tool message handling are robust against invalid tool_call_id values and preserve message metadata for LLM calls.
Bug Fixes:
Enhancements: