Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 13 additions & 9 deletions backend/tests/Ragas/utils/modules/ragas_evaluation.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,8 @@
import pandas as pd
from ragas import evaluate, EvaluationDataset, SingleTurnSample
from ragas.llms import LangchainLLMWrapper
from langchain_openai import ChatOpenAI
from ragas.metrics import FactualCorrectness, SemanticSimilarity
from ragas.metrics._nv_metrics import AnswerAccuracy
from langchain_openai.chat_models import ChatOpenAI
from ragas.metrics import answer_relevancy, ContextRelevance, SemanticSimilarity, context_precision
from ragas.embeddings import LangchainEmbeddingsWrapper
from langchain_openai import OpenAIEmbeddings
from dotenv import load_dotenv
Expand Down Expand Up @@ -151,11 +150,15 @@ async def evaluate_with_ragas(
dataset, samples, processed_data = create_ragas_dataset(data)

# Define metrics to use for evaluation
print("Configuring default RAGAS metrics: factual_correctness, semantic_similarity, answer_accuracy")
print(
"Configuring default RAGAS metrics: semantic_similarity, "
"answer_relevancy, context_relevance, context_precision"
)
metrics = [
FactualCorrectness(llm=llm),
SemanticSimilarity(embeddings=embeddings_wrapper),
AnswerAccuracy(llm=llm),
SemanticSimilarity(),
answer_relevancy,
context_precision,
ContextRelevance(llm=llm),
]

# Run the evaluation
Expand All @@ -166,9 +169,10 @@ async def evaluate_with_ragas(
print("Processing evaluation results including llm_usage if present...")
# Define expected metrics for alignment and output naming
expected_metrics = [
("factual_correctness(mode=f1)", "factual_correctness"),
("nv_context_relevance", "recontext_relevance"),
("context_precision", "context_precision"),
("answer_relevancy", "answer_relevancy"),
("semantic_similarity", "semantic_similarity"),
("nv_accuracy", "answer_accuracy"),
]

df = results.to_pandas()
Expand Down
Loading