mnist_mlp.py 在MNIST数据集上训练一个简单的多层感知机。
mnist_cnn.py 在MNIST数据集上训练一个简单的卷积网络。
cifar10_cnn.py 在CIFAR10小图片数据集上训练一个简单的卷积神经网络。
cifar10_resnet.py 在CIFAR10小图片数据集上训练一个残差网络。
conv_lstm.py Demonstrates the use of a convolutional LSTM network.
image_ocr.py Trains a convolutional stack followed by a recurrent stack and a CTC logloss function to perform optical character recognition (OCR).
mnist_acgan.py Implementation of AC-GAN (Auxiliary Classifier GAN) on the MNIST dataset
mnist_hierarchical_rnn.py 训练一个分层循环网络去给MNIST数据集分类。
mnist_siamese.py 在MNIST数据集上取成对数字训练一个Siamese多层感知器。
mnist_swwae.py Trains a Stacked What-Where AutoEncoder built on residual blocks on the MNIST dataset.
mnist_transfer_cnn.py 迁移学习的简单例子。
addition_rnn.py Implementation of sequence to sequence learning for performing addition of two numbers (as strings).
babi_rnn.py Trains a two-branch recurrent network on the bAbI dataset for reading comprehension.
babi_memnn.py Trains a memory network on the bAbI dataset for reading comprehension.
imdb_bidirectional_lstm.py Trains a Bidirectional LSTM on the IMDB sentiment classification task.
imdb_cnn.py Demonstrates the use of Convolution1D for text classification.
imdb_cnn_lstm.py Trains a convolutional stack followed by a recurrent stack network on the IMDB sentiment classification task.
imdb_fasttext.py Trains a FastText model on the IMDB sentiment classification task.
imdb_lstm.py Trains an LSTM model on the IMDB sentiment classification task.
lstm_stateful.py Demonstrates how to use stateful RNNs to model long sequences efficiently.
pretrained_word_embeddings.py Loads pre-trained word embeddings (GloVe embeddings) into a frozen Keras Embedding layer, and uses it to train a text classification model on the 20 Newsgroup dataset.
reuters_mlp.py Trains and evaluate a simple MLP on the Reuters newswire topic classification task.
lstm_text_generation.py Generates text from Nietzsche's writings.
conv_filter_visualization.py Visualization of the filters of VGG16, via gradient ascent in input space.
deep_dream.py Deep Dreams in Keras.
neural_doodle.py Neural doodle.
neural_style_transfer.py Neural style transfer.
variational_autoencoder.py Demonstrates how to build a variational autoencoder.
variational_autoencoder_deconv.py Demonstrates how to build a variational autoencoder with Keras using deconvolution layers.
antirectifier.py Demonstrates how to write custom layers for Keras.
mnist_sklearn_wrapper.py Demonstrates how to use the sklearn wrapper.
mnist_irnn.py Reproduction of the IRNN experiment with pixel-by-pixel sequential MNIST in "A Simple Way to Initialize Recurrent Networks of Rectified Linear Units" by Le et al.
mnist_net2net.py Reproduction of the Net2Net experiment with MNIST in "Net2Net: Accelerating Learning via Knowledge Transfer".
reuters_mlp_relu_vs_selu.py Compares self-normalizing MLPs with regular MLPs.
mnist_tfrecord.py MNIST dataset with TFRecords, the standard TensorFlow data format.