2025/02/19
ππ ToCa solution for FLUX has been officially released after adjustments, now achieving up to 3.14Γ lossless acceleration!2025/01/22
π₯π₯ ToCa is honored to be accepted by ICLR 2025!2024/12/29
ππ We release our work DuCa about accelerating diffusion transformers for FREE, which achieves nearly lossless acceleration of 2.50Γ on OpenSora! π DuCa also overcomes the limitation of ToCa by fully supporting FlashAttention, enabling broader compatibility and efficiency improvements.2024/12/24
π€π€ We release an open-sourse repo "Awesome-Token-Reduction-for-Model-Compression", which collects recent awesome token reduction papers! Feel free to contribute your suggestions!2024/12/20
π₯π₯ Our ToCa has achieved nearly lossless acceleration of 1.51Γ on FLUX, feel free to check the latest version of our paper!2024/12/10
π₯π₯ Our team's recent work, SiTo (https://github.com/EvelynZhang-epiclab/SiTo), has been accepted to AAAI 2025. It accelerates diffusion models through adaptive Token Pruning.2024/10/16
π€π€ Users with autodl accounts can now quickly experience OpenSora-ToCa by directly using our publicly available image!2024/10/12
ππ We release our work ToCa about accelerating diffusion transformers for FREE, which achieves nearly lossless acceleration of 2.36Γ on OpenSora!2024/07/15
π€π€ We release an open-sourse repo "Awesome-Generation-Acceleration", which collects recent awesome generation accleration papers! Feel free to contribute your suggestions!
- Support for FLOPs calculation
- Add the FLUX version of ToCa
- Further optimize the code logic to reduce the time consumption of tensor operations
Python>=3.9
CUDA>=11.8
git clone https://github.com/Shenyi-Z/ToCa.git
We evaluated our model under the same environments as the original models. So you may set the environments through following the requirements of the mentioned original models.
Links:
Original Models | urls |
---|---|
DiT | https://github.com/facebookresearch/DiT |
PixArt-Ξ± | https://github.com/PixArt-alpha/PixArt-alpha |
OpenSora | https://github.com/hpcaitech/Open-Sora |
FLUX | https://github.com/black-forest-labs/flux |
Besides, we provide a replica for our environment here:
From our environment.yaml
cd DiT-ToCa
conda env create -f environment-dit.yml
cd PixArt-alpha-ToCa
conda env create -f environment-pixart.yml
cd Open-Sora
conda env create -f environment-opensora.yml
pip install -v . # for development mode, `pip install -v -e .`
sample images for visualization
cd DiT-ToCa
python sample.py --image-size 256 --num-sampling-steps 250 --cache-type attention --fresh-threshold 4 --fresh-ratio 0.07 --ratio-scheduler ToCa-ddpm250 --force-fresh global --soft-fresh-weight 0.25
sample images for evaluation (e.g 50k)
cd DiT-ToCa
torchrun --nnodes=1 --nproc_per_node=6 sample_ddp.py --model DiT-XL/2 --per-proc-batch-size 150 --image-size 256 --cfg-scale 1.5 --num-sampling-steps 250 --cache-type attention --fresh-ratio 0.07 --ratio-scheduler ToCa-ddpm250 --force-fresh global --fresh-threshold 4 --soft-fresh-weight 0.25 --num-fid-samples 50000
sample images for visualization
cd DiT-ToCa
python sample.py --image-size 256 --num-sampling-steps 50 --cache-type attention --fresh-threshold 3 --fresh-ratio 0.07 --ratio-scheduler ToCa-ddim50 --force-fresh global --soft-fresh-weight 0.25 --ddim-sample
sample images for evaluation (e.g 50k)
cd DiT-ToCa
torchrun --nnodes=1 --nproc_per_node=6 sample_ddp.py --model DiT-XL/2 --per-proc-batch-size 150 --image-size 256 --cfg-scale 1.5 --num-sampling-steps 50 --cache-type attention --fresh-ratio 0.07 --ratio-scheduler ToCa-ddim50 --force-fresh global --fresh-threshold 3 --soft-fresh-weight 0.25 --num-fid-samples 50000 --ddim-sample
Just add --test-FLOPs, here an example:
cd DiT-ToCa
python sample.py --image-size 256 --num-sampling-steps 50 --cache-type attention --fresh-threshold 3 --fresh-ratio 0.07 --ratio-scheduler ToCa-ddim50 --force-fresh global --soft-fresh-weight 0.25 --ddim-sample --test-FLOPs
sample images for visualization
cd PixArt-alpha-ToCa
python scripts/inference.py --model_path /root/autodl-tmp/pretrained_models/PixArt-XL-2-256x256.pth --image_size 256 --bs 100 --txt_file /root/autodl-tmp/test.txt --fresh_threshold 3 --fresh_ratio 0.30 --cache_type attention --force_fresh global --soft_fresh_weight 0.25 --ratio_scheduler ToCa
sample images for evaluation (e.g 30k for COCO, 1.6k for PartiPrompts)
cd PixArt-alpha-ToCa
torchrun --nproc_per_node=6 scripts/inference_ddp.py --model_path /root/autodl-tmp/pretrained_models/PixArt-XL-2-256x256.pth --image_size 256 --bs 100 --txt_file /root/autodl-tmp/COCO/COCO_caption_prompts_30k.txt --fresh_threshold 3 --fresh_ratio 0.30 --cache_type attention --force_fresh global --soft_fresh_weight 0.25 --ratio_scheduler ToCa
οΌBesides, if you need our npz file: https://drive.google.com/file/d/1vUdoSgdIvtXo1cAS_aOFCJ1-XC_i1KEQ/view?usp=sharing)
sample video for visualizaiton
cd Open-Sora
python scripts/inference.py configs/opensora-v1-2/inference/sample.py --num-frames 2s --resolution 480p --aspect-ratio 9:16 --prompt "a beautiful waterfall"
sample video for VBench evaluation
cd Open-Sora
bash eval/vbench/launch.sh /root/autodl-tmp/pretrained_models/hpcai-tech/OpenSora-STDiT-v3/model.safetensors 51 opensora-ToCa 480p 9:16
(remember replacing "/root/autodl-tmp/pretrained_models/hpcai-tech/OpenSora-STDiT-v3/model.safetensors" with your own path!)
First, you need to enter the environment adapted for FLUX. While the official documentation uses venv
to build the environment, you can also set it up using conda
, which you might be more familiar with.
How to build a conda environment for FLUX?
cd flux-ToCa
conda create -n flux python=3.10
pip install -e ".[all]"
For interactive sampling run
python -m flux --name <name> --loop
Or to generate a single sample run
python -m flux --name <name> \
--height <height> --width <width> \
--prompt "<prompt>"
Typically, <name>
should be set to flux-dev
.
Generate image samples with a txt file
python src/sample.py --prompt_file </path/to/your/prompt.txt> --width 1024 --height 1024 --model_name flux-dev --add_sampling_metadata --output_dir </path/to/your/generated/samples/folder> --num_steps 50
The --add_sampling_metadata
parameter is used to control whether the prompt is added to the image's EXIF metadata.
We also provide function for FLOPs testing, but in this mode, no generated samples are given.
python src/sample.py --prompt_file </path/to/your/test/prompt.txt> --width 1024 --height 1024 --model_name flux-dev --add_sampling_metadata --output_dir </path/to/your/generated/samples/folder> --num_steps 50 --test_FLOPs
Use the framework of Geneval for evaluation
python src/geneval_flux.py /root/geneval/prompts/evaluation_metadata.jsonl --model_name flux-dev --n_samples 4 --steps 50 --width 1024 --height 1024 --seed 42 --output_dir /root/autodl-tmp/samples/flux-ToCa
How to prepare environment for geneval?
The environment required for Geneval's metric computation is somewhat specific. As of February 2025, it is not yet possible to set up the environment directly using the default method provided in the project. However, we can follow the guidance in this Geneval issue djghosh13/geneval#12 to set up the environment. The instructions are very detailed.
Method | Geneval overall score |
ImageRewrd DrawBench200 |
FLOPs |
Latency |
Compress Ratio |
Speed Up |
---|---|---|---|---|---|---|
original | 0.6752 | 0.9898 | 3719.50 | 33.87s | 1.00 | 1.00 |
60% steps | 0.6700 | 0.9739 | 2231.70 | 20.49s | 1.67 | 1.65 |
50% steps | 0.6656 | 0.9429 | 1859.75 | 17.12s | 2.00 | 1.98 |
40% steps | 0.6606 | 0.9317 | 1487.80 | 13.77s | 2.62 | 2.45 |
FORA3 | 0.6594 | 0.9227 | 1320.07 | 12.98s | 2.82 | 2.61 |
ToCa4-01 | 0.6748 | 0.9798 | 1263.22 | 11.91s | 2.94 | 2.84 |
ToCa5-01 | 0.6750 | 0.9731 | 1126.76 | 10.80s | 3.30 | 3.14 |
ToCa6-01 | 0.6653 | 0.9493 | 990.30 | 9.48s | 3.76 | 3.57 |
Explanation of the Improved ToCa
The acceleration effect has significantly improved while maintaining generation quality compared with the previous version. This is because, in the current version of the code, we have further optimized ToCa and adopted more reliable metrics (Image Reward on DrawBench200, Geneval).
- Thanks to DiT for their great work and codebase upon which we build DiT-ToCa.
- Thanks to PixArt-Ξ± for their great work and codebase upon which we build PixArt-Ξ±-ToCa.
- Thanks to OpenSora for their great work and codebase upon which we build OpenSora-ToCa.
- Thanks to FLUX for their great work and codebase upon which we build FLUX-ToCa.
@article{zou2024accelerating,
title={Accelerating Diffusion Transformers with Token-wise Feature Caching},
author={Zou, Chang and Liu, Xuyang and Liu, Ting and Huang, Siteng and Zhang, Linfeng},
journal={arXiv preprint arXiv:2410.05317},
year={2024}
}
If you have any questions, please email [email protected]
.