Skip to content
/ AML Public
forked from naderAsadi/AML

Codebase for " Reducing Representation Drift in Online Continual Learning"

License

Notifications You must be signed in to change notification settings

Sherman-1/AML

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reducing Representation Drift in Online Continual Learning

Paper

Avoiding disrupting learned representations when new classes are introduced

(key) Requirements

  • Python 3.8
  • Pytorch 1.6.0

Structure

├── method.py           # Implementation of proposed methods and reported baselines
├── buffer.py           # Basic buffer implementation 
├── data.py             # DataLoaders and Datasets
├── main.py             # main file for ER
├── model.py            # model defitinition and cosine cross-entropy head
├── losses.py           # custom loss functions
├── utils.py            # utilities, from logging to data download

Running Experiments

python main.py --dataset <dataset> --method <method> --mem_size <mem_size> 

ER-ACE example:

python main.py --dataset split_cifar10 --method er_ace --mem_size 20 

ER-AML example:

python main.py --dataset split_cifar10 --method er_aml --mem_size 20 --supcon_temperature 0.2

Logging

Logging is done with Weights & Biases and can be turned on like this:

python -dataset <dataset> --method <method> --wandb_log online --wandb_entity <wandb username>

Cite

@article{caccia2021reducing,
  title={Reducing Representation Drift in Online Continual Learning},
  author={Caccia, Lucas and Aljundi, Rahaf and Tuytelaars, Tinne and Pineau, Joelle and Belilovsky, Eugene},
  journal={arXiv preprint arXiv:2104.05025},
  year={2021}
}

About

Codebase for " Reducing Representation Drift in Online Continual Learning"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%