Skip to content

Commit

Permalink
code-style fix
Browse files Browse the repository at this point in the history
  • Loading branch information
alexdrydew committed May 1, 2022
1 parent 566eec0 commit 2766517
Show file tree
Hide file tree
Showing 15 changed files with 17 additions and 17 deletions.
2 changes: 1 addition & 1 deletion dump_graph_model_v4.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def preprocess(x):
return tf.concat([preprocess_features(x), latent_input], axis=-1)

def postprocess(x):
x = 10 ** x - 1
x = 10**x - 1
return tf.where(x < 1.0, 0.0, x)

dump_graph.model_to_graph(
Expand Down
2 changes: 1 addition & 1 deletion legacy_code/models/baseline_fc_v4_8x16.py
Original file line number Diff line number Diff line change
Expand Up @@ -199,7 +199,7 @@ def gradient_penalty_on_data(self, features, real):
# if self.cramer:
# d_real = tf.norm(d_real, axis=-1)
grads = tf.reshape(t.gradient(d_real, real), [len(real), -1])
return tf.reduce_mean(tf.reduce_sum(grads ** 2, axis=-1))
return tf.reduce_mean(tf.reduce_sum(grads**2, axis=-1))

@tf.function
def calculate_losses(self, feature_batch, target_batch):
Expand Down
2 changes: 1 addition & 1 deletion legacy_code/models/baseline_v2_10x10.py
Original file line number Diff line number Diff line change
Expand Up @@ -189,7 +189,7 @@ def gradient_penalty_on_data(self, features, real):
# if self.cramer:
# d_real = tf.norm(d_real, axis=-1)
grads = tf.reshape(t.gradient(d_real, real), [len(real), -1])
return tf.reduce_mean(tf.reduce_sum(grads ** 2, axis=-1))
return tf.reduce_mean(tf.reduce_sum(grads**2, axis=-1))

@tf.function
def calculate_losses(self, feature_batch, target_batch):
Expand Down
2 changes: 1 addition & 1 deletion legacy_code/models/baseline_v3_6x15.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,7 +212,7 @@ def gradient_penalty_on_data(self, features, real):
# if self.cramer:
# d_real = tf.norm(d_real, axis=-1)
grads = tf.reshape(t.gradient(d_real, real), [len(real), -1])
return tf.reduce_mean(tf.reduce_sum(grads ** 2, axis=-1))
return tf.reduce_mean(tf.reduce_sum(grads**2, axis=-1))

@tf.function
def calculate_losses(self, feature_batch, target_batch):
Expand Down
2 changes: 1 addition & 1 deletion legacy_code/models/baseline_v4_8x16.py
Original file line number Diff line number Diff line change
Expand Up @@ -221,7 +221,7 @@ def gradient_penalty_on_data(self, features, real):
# if self.cramer:
# d_real = tf.norm(d_real, axis=-1)
grads = tf.reshape(t.gradient(d_real, real), [len(real), -1])
return tf.reduce_mean(tf.reduce_sum(grads ** 2, axis=-1))
return tf.reduce_mean(tf.reduce_sum(grads**2, axis=-1))

@tf.function
def calculate_losses(self, feature_batch, target_batch):
Expand Down
2 changes: 1 addition & 1 deletion legacy_code/test_script_data_v0.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@


def unscale(x):
return 10 ** x - 1
return 10**x - 1


def write_hist_summary(step):
Expand Down
2 changes: 1 addition & 1 deletion legacy_code/test_script_data_v1.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ def save_model(step):
writer_val = tf.summary.create_file_writer(f'logs/{args.checkpoint_name}/validation')

def unscale(x):
return 10 ** x - 1
return 10**x - 1

def write_hist_summary(step):
if step % args.save_every == 0:
Expand Down
2 changes: 1 addition & 1 deletion legacy_code/test_script_data_v1_normed.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@


def unscale(x):
return 10 ** x - 1
return 10**x - 1


def write_hist_summary(step):
Expand Down
2 changes: 1 addition & 1 deletion legacy_code/test_script_data_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -138,7 +138,7 @@ def save_model(step):
writer_val = tf.summary.create_file_writer(f'logs/{args.checkpoint_name}/validation')

def unscale(x):
return 10 ** x - 1
return 10**x - 1

def get_images(return_raw_data=False, calc_chi2=False, gen_more=None, sample=(X_test, Y_test), batch_size=128):
X, Y = sample
Expand Down
2 changes: 1 addition & 1 deletion legacy_code/test_script_data_v3.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,7 @@ def save_model(step):
writer_val = tf.summary.create_file_writer(f'logs/{args.checkpoint_name}/validation')

def unscale(x):
return 10 ** x - 1
return 10**x - 1

def get_images(return_raw_data=False, calc_chi2=False, gen_more=None, sample=(X_test, Y_test), batch_size=128):
X, Y = sample
Expand Down
6 changes: 3 additions & 3 deletions metrics/trends.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ def stats(arr):
).T

if do_plot:
mean_p_std_err = (mean_err ** 2 + std_err ** 2) ** 0.5
mean_p_std_err = (mean_err**2 + std_err**2) ** 0.5
plt.fill_between(bin_centers, mean - mean_err, mean + mean_err, **kwargs)
kwargs['alpha'] *= 0.5
kwargs = {k: v for k, v in kwargs.items() if k != 'label'}
Expand Down Expand Up @@ -78,11 +78,11 @@ def make_trend_plot(feature_real, real, feature_gen, gen, name, calc_chi2=False,

gen_upper = gen_mean + gen_std
gen_lower = gen_mean - gen_std
gen_err2 = gen_mean_err ** 2 + gen_std_err ** 2
gen_err2 = gen_mean_err**2 + gen_std_err**2

real_upper = real_mean + real_std
real_lower = real_mean - real_std
real_err2 = real_mean_err ** 2 + real_std_err ** 2
real_err2 = real_mean_err**2 + real_std_err**2

chi2 = ((gen_upper - real_upper) ** 2 / (gen_err2 + real_err2)).sum() + (
(gen_lower - real_lower) ** 2 / (gen_err2 + real_err2)
Expand Down
2 changes: 1 addition & 1 deletion models/callbacks.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,6 @@ def get_scheduler(lr, lr_decay):
return eval(lr_decay)

def schedule_lr(step):
return lr * lr_decay ** step
return lr * lr_decay**step

return schedule_lr
2 changes: 1 addition & 1 deletion models/model_v4.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,7 @@ def gradient_penalty_on_data(self, features, real):
d_real = self.discriminator([_f(features), real])

grads = tf.reshape(t.gradient(d_real, real), [len(real), -1])
return tf.reduce_mean(tf.reduce_sum(grads ** 2, axis=-1))
return tf.reduce_mean(tf.reduce_sum(grads**2, axis=-1))

@tf.function
def calculate_losses(self, feature_batch, target_batch):
Expand Down
2 changes: 1 addition & 1 deletion models/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,7 +170,7 @@ def vector_img_connect_block(vector_shape, img_shape, block, vector_bypass=False
if concat_outputs:
outputs = tf.keras.layers.Concatenate(axis=-1)(outputs)

args = dict(inputs=[input_vec, input_img], outputs=outputs,)
args = dict(inputs=[input_vec, input_img], outputs=outputs)

if name:
args['name'] = name
Expand Down
2 changes: 1 addition & 1 deletion models/scalers.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ def scale(self, x):
return np.log10(1 + x)

def unscale(self, x):
return 10 ** x - 1
return 10**x - 1


class Gaussian:
Expand Down

0 comments on commit 2766517

Please sign in to comment.