-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2 from GrachevaAS/refactor
Refactoring
- Loading branch information
Showing
7 changed files
with
225 additions
and
182 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
import tensorflow as tf | ||
|
||
|
||
def get_generator(activation, kernel_init, latent_dim): | ||
generator = tf.keras.Sequential([ | ||
tf.keras.layers.Dense(units=64, activation=activation, input_shape=(latent_dim,)), | ||
|
||
tf.keras.layers.Reshape((4, 4, 4)), | ||
|
||
tf.keras.layers.Conv2D(filters=32, kernel_size=3, padding='same', activation=activation, kernel_initializer=kernel_init), | ||
tf.keras.layers.Conv2D(filters=32, kernel_size=3, padding='same', activation=activation, kernel_initializer=kernel_init), | ||
tf.keras.layers.UpSampling2D(), # 8x8 | ||
|
||
tf.keras.layers.Conv2D(filters=16, kernel_size=3, padding='same' , activation=activation, kernel_initializer=kernel_init), | ||
tf.keras.layers.Conv2D(filters=16, kernel_size=3, padding='valid', activation=activation, kernel_initializer=kernel_init), # 6x6 | ||
tf.keras.layers.UpSampling2D(), # 12x12 | ||
|
||
tf.keras.layers.Conv2D(filters=8, kernel_size=3, padding='valid', activation=activation, kernel_initializer=kernel_init), # 10x10 | ||
tf.keras.layers.Conv2D(filters=1, kernel_size=1, padding='valid', activation=tf.keras.activations.relu, kernel_initializer=kernel_init), | ||
|
||
tf.keras.layers.Reshape((10, 10)), | ||
], name='generator') | ||
return generator | ||
|
||
|
||
def get_discriminator(activation, kernel_init, dropout_rate): | ||
discriminator = tf.keras.Sequential([ | ||
tf.keras.layers.Reshape((10, 10, 1), input_shape=(10, 10)), | ||
|
||
tf.keras.layers.Conv2D(filters=16, kernel_size=3, padding='same', activation=activation, kernel_initializer=kernel_init), | ||
tf.keras.layers.Dropout(dropout_rate), | ||
tf.keras.layers.Conv2D(filters=16, kernel_size=3, padding='valid', activation=activation, kernel_initializer=kernel_init), # 8x8 | ||
tf.keras.layers.Dropout(dropout_rate), | ||
|
||
tf.keras.layers.MaxPool2D(), # 4x4 | ||
|
||
tf.keras.layers.Conv2D(filters=32, kernel_size=3, padding='same', activation=activation, kernel_initializer=kernel_init), | ||
tf.keras.layers.Dropout(dropout_rate), | ||
tf.keras.layers.Conv2D(filters=32, kernel_size=3, padding='same', activation=activation, kernel_initializer=kernel_init), | ||
tf.keras.layers.Dropout(dropout_rate), | ||
|
||
tf.keras.layers.MaxPool2D(), # 2x2 | ||
|
||
tf.keras.layers.Conv2D(filters=64, kernel_size=2, padding='valid', activation=activation, kernel_initializer=kernel_init), # 1x1 | ||
tf.keras.layers.Dropout(dropout_rate), | ||
|
||
tf.keras.layers.Reshape((64,)), | ||
|
||
tf.keras.layers.Dense(units=128, activation=activation), | ||
tf.keras.layers.Dropout(dropout_rate), | ||
|
||
tf.keras.layers.Dense(units=1, activation=None), | ||
], name='discriminator') | ||
return discriminator | ||
|
||
|
||
def disc_loss(d_real, d_fake): | ||
return tf.reduce_mean(d_fake - d_real) | ||
|
||
|
||
def gen_loss(d_real, d_fake): | ||
return tf.reduce_mean(d_real - d_fake) | ||
|
||
|
||
class BaselineModel10x10: | ||
def __init__(self, activation=tf.keras.activations.relu, kernel_init='glorot_uniform', | ||
dropout_rate=0.2, lr=1e-4, latent_dim=32, gp_lambda=10., num_disc_updates=3): | ||
self.disc_opt = tf.keras.optimizers.RMSprop(lr) | ||
self.gen_opt = tf.keras.optimizers.RMSprop(lr) | ||
self.latent_dim = latent_dim | ||
self.gp_lambda = gp_lambda | ||
self.num_disc_updates = num_disc_updates | ||
|
||
self.generator = get_generator(activation=activation, kernel_init=kernel_init, latent_dim=latent_dim) | ||
self.discriminator = get_discriminator(activation=activation, kernel_init=kernel_init, dropout_rate=dropout_rate) | ||
|
||
self.step_counter = tf.Variable(0, dtype='int32', trainable=False) | ||
|
||
def make_fake(self, size): | ||
return self.generator( | ||
tf.random.normal(shape=(size, self.latent_dim), dtype='float32') | ||
) | ||
|
||
def gradient_penalty(self, real, fake): | ||
alpha = tf.random.uniform(shape=[len(real), 1, 1]) | ||
interpolates = alpha * real + (1 - alpha) * fake | ||
with tf.GradientTape() as t: | ||
t.watch(interpolates) | ||
d_int = self.discriminator(interpolates) | ||
grads = tf.reshape(t.gradient(d_int, interpolates), [len(real), -1]) | ||
return tf.reduce_mean(tf.maximum(tf.norm(grads, axis=-1) - 1, 0)**2) | ||
|
||
@tf.function | ||
def calculate_losses(self, batch): | ||
fake = self.make_fake(len(batch)) | ||
d_real = self.discriminator(batch) | ||
d_fake = self.discriminator(fake) | ||
|
||
d_loss = disc_loss(d_real, d_fake) + self.gp_lambda * self.gradient_penalty(batch, fake) | ||
g_loss = gen_loss(d_real, d_fake) | ||
return {'disc_loss': d_loss, 'gen_loss': g_loss} | ||
|
||
def disc_step(self, batch): | ||
batch = tf.convert_to_tensor(batch) | ||
|
||
with tf.GradientTape() as t: | ||
losses = self.calculate_losses(batch) | ||
|
||
grads = t.gradient(losses['disc_loss'], self.discriminator.trainable_variables) | ||
self.disc_opt.apply_gradients(zip(grads, self.discriminator.trainable_variables)) | ||
return losses | ||
|
||
def gen_step(self, batch): | ||
batch = tf.convert_to_tensor(batch) | ||
|
||
with tf.GradientTape() as t: | ||
losses = self.calculate_losses(batch) | ||
|
||
grads = t.gradient(losses['gen_loss'], self.generator.trainable_variables) | ||
self.gen_opt.apply_gradients(zip(grads, self.generator.trainable_variables)) | ||
return losses | ||
|
||
@tf.function | ||
def training_step(self, batch): | ||
if self.step_counter == self.num_disc_updates: | ||
result = self.gen_step(batch) | ||
self.step_counter.assign(0) | ||
else: | ||
result = self.disc_step(batch) | ||
self.step_counter.assign_add(1) | ||
return result |
This file was deleted.
Oops, something went wrong.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.