A production-ready chatbot API using RAG (Retrieval Augmented Generation) with Google's Gemini API, deployed on Vercel.
- β Level 1: Basic API Chatbot (10 Points) - COMPLETED
- β Level 2: Store & Retrieve Movie Script Data (20 Points) - COMPLETED
- β Level 3: Implement RAG with Vector Search (30 Points) - COMPLETED
- β Level 4: Scale System to Handle High Traffic (40 Points) - COMPLETED
- β Level 5: Optimise for Latency & Deploy (50 Points) - COMPLETED
- Node.js & Express.js
- MongoDB Atlas (Vector Search)
- Google Gemini API for embeddings and text generation
- RAG for context-enhanced responses
- Redis (Caching)
- Prometheus & Grafana (Monitoring)
- Vector embeddings for dialogue matching
- Semantic search in MongoDB Atlas
- Context-enhanced AI responses
- Redis caching (120s TTL)
- Rate limiting (5 req/s per user)
- Horizontal scaling support
- Response time tracking
- Request count metrics
- Cache hit ratio
- Error rate monitoring
- Real-time Grafana dashboards
- node -v # >= 20.x
- MongoDB Atlas (Vector Search)
- Google Gemini API key
- Redis
- Vercel
- GEMINI_API_KEY=your_key
- MONGODB_URI=your_mongodb_uri
- REDIS_URL=your_redis_url
- PORT=3000
- Clone the repository
git clone https://github.com/SidGit195/AI-Movie-Character-Chatbot.git
Click to watch the demonstration video of project: https://www.youtube.com/watch?v=QmldLikMrk0