Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 8 additions & 11 deletions examples/basic_usage.rs
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ fn main() -> Result<()> {
let device = Device::Cpu;

println!("Starting optimization of 2D Rosenbrock function");
println!("Initial point: {:?}", initial_point);
println!("Initial point: {initial_point:?}");
println!(
"Initial value: {:.6}",
problem.evaluate_f64(&initial_point)?
Expand All @@ -63,15 +63,12 @@ fn main() -> Result<()> {
// Print progress
if iteration % 10 == 0 {
let f_val = problem.evaluate_f64(&initial_point)?;
println!(
"Iteration {}: f = {:.6}, ||∇f|| = {:.6}",
iteration, f_val, grad_norm
);
println!("Iteration {iteration}: f = {f_val:.6}, ||∇f|| = {grad_norm:.6}");
}

// Check convergence
if grad_norm < 1e-6 {
println!("Converged! Gradient norm: {:.2e}", grad_norm);
println!("Converged! Gradient norm: {grad_norm:.2e}");
break;
}

Expand Down Expand Up @@ -127,10 +124,10 @@ fn main() -> Result<()> {
let final_grad_norm = final_gradient.iter().map(|g| g * g).sum::<f64>().sqrt();

println!("\nOptimization completed!");
println!("Final point: {:?}", initial_point);
println!("Final value: {:.6}", final_value);
println!("Final gradient norm: {:.2e}", final_grad_norm);
println!("Total iterations: {}", iteration);
println!("Final point: {initial_point:?}");
println!("Final value: {final_value:.6}");
println!("Final gradient norm: {final_grad_norm:.2e}");
println!("Total iterations: {iteration}");

// Compare with known optimum
let optimum = vec![1.0, 1.0];
Expand All @@ -141,7 +138,7 @@ fn main() -> Result<()> {
.sum::<f64>()
.sqrt();

println!("Distance to optimum [1, 1]: {:.6}", distance_to_optimum);
println!("Distance to optimum [1, 1]: {distance_to_optimum:.6}");

if distance_to_optimum < 1e-3 {
println!("✓ Successfully found the global minimum!");
Expand Down
17 changes: 7 additions & 10 deletions examples/custom_problem.rs
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ impl QuadraticProblem {
}

Self {
name: format!("Quadratic{}D_Cond{:.1}", dimension, condition_number),
name: format!("Quadratic{dimension}D_Cond{condition_number:.1}"),
dimension,
matrix_a,
vector_b,
Expand Down Expand Up @@ -140,7 +140,7 @@ impl DifferentiableFunction for QuadraticProblem {
// Evaluate using f64 implementation
let result = self
.evaluate_f64(&x)
.map_err(|e| candle_core::Error::Msg(format!("Evaluation error: {}", e)))?;
.map_err(|e| candle_core::Error::Msg(format!("Evaluation error: {e}")))?;
Ok(result)
}
fn gradient(&self, params: &[Tensor]) -> candle_core::Result<Vec<Tensor>> {
Expand All @@ -150,7 +150,7 @@ impl DifferentiableFunction for QuadraticProblem {
// Compute gradient using f64 implementation
let grad = self
.gradient_f64(&x)
.map_err(|e| candle_core::Error::Msg(format!("Gradient error: {}", e)))?;
.map_err(|e| candle_core::Error::Msg(format!("Gradient error: {e}")))?;
// Convert back to tensors
grad.iter()
.map(|&g| Tensor::from_slice(&[g], (1,), &Device::Cpu))
Expand Down Expand Up @@ -196,8 +196,8 @@ fn main() -> Result<()> {
);
let qqn_error = (qqn_result.1 - problem.optimal_value().unwrap()).abs();
let lbfgs_error = (lbfgs_result.1 - problem.optimal_value().unwrap()).abs();
println!("QQN error: {:.2e}", qqn_error);
println!("L-BFGS error: {:.2e}", lbfgs_error);
println!("QQN error: {qqn_error:.2e}");
println!("L-BFGS error: {lbfgs_error:.2e}");
if qqn_result.0 < lbfgs_result.0 {
println!("✓ QQN converged faster!");
} else if qqn_result.0 == lbfgs_result.0 {
Expand All @@ -222,7 +222,7 @@ fn run_optimizer(
.map_err(|e| anyhow::anyhow!("Failed to create tensors: {}", e))?;
let mut iteration = 0;
let max_iterations = 1000;
println!("Starting {} optimization...", name);
println!("Starting {name} optimization...");
while iteration < max_iterations {
// Convert tensors back to f64 for convergence checking
let x: Vec<f64> = params
Expand All @@ -245,10 +245,7 @@ fn run_optimizer(
.collect::<candle_core::Result<Vec<_>>>()
.map_err(|e| anyhow::anyhow!("Failed to extract values: {}", e))?;
let f_val = problem.evaluate_f64(&x)?;
println!(
" Iteration {}: f = {:.6}, ||∇f|| = {:.2e}",
iteration, f_val, grad_norm
);
println!(" Iteration {iteration}: f = {f_val:.6}, ||∇f|| = {grad_norm:.2e}");
}
}
// Convert final parameters back to f64 for evaluation
Expand Down
Loading
Loading