Skip to content

DockerML is a tool that sets up fully-featured environments for experimenting with AI/ML

License

Notifications You must be signed in to change notification settings

SupreethRao99/DockerML

Repository files navigation

DockerML

DockerML

DockerML is a turnkey solution that lets you configure your Machine Learning environment in a few simple steps, No dependancy issues, no interference with system libraries, easy portability and most of all no headaches. With DockerML you should be able to be up and running with a ML environment in minutes instead of hours.

DockerML comes pre-installed with the following libraries

Frameworks Version Source
catalyst latest PyPi
einops latest PyPi
jax latest PyPi
jaxlib latest PyPi
jupyterlab latest PyPi
matplotlib latest PyPi
numba latest PyPi
numpy latest PyPi
onnx latest PyPi
optuna latest PyPi
opencv-python Source
pandas latest PyPi
ray latest PyPi
scikit-learn latest PyPi
sympy latest PyPi
tensorflow latest PyPi
torch latest PyPi
torchvision latest PyPi
tqdm latest PyPi
transformers latest PyPi
vowpalwabbit latest PyPi
wandb latest PyPi
xgboost latest PyPi

Directory Structure

dockerml
├── LICENSE
├── README.md
├── dockerml-cpu.Dockerfile
├── dockerml-gpu.Dockerfile
├── docs
│   ├── _config.yml
│   └── index.md
└── requirements.txt

Running the container

to use DockerML

  1. Clone this repository git clone https://github.com/SupreethRao99/DockerML.git
  2. Change directories to the DockerML directory cd DockerML
  3. To build the docker image run docker build -f dockerml-cpu.Dockerfile -t supreethrao/docker-ml .
  4. To run the image , execute docker run -it -p 8888:8888 supreethrao/dockerml-cpu
  • a directory on the docker host can be attached to the container using the -v flag. docker run -it -p 8888:8888 -v /path/to/local/folder:/usr/src/app supreethrao/dockerml-cpu . To know more about attaching volumes , Docker volumes documentation
  1. Once the container is running , inside the command line of the container run jupyter notebook --ip 0.0.0.0 --no-browser --allow-root
  2. Go to (http://localhost:8888/tree) or the url produced as the output when the above command was run (preffered)

Citation

@misc{DockerML,
    author = {Supreeth Rao},
    title = {DockerML : Turnkey setup of Jupyter Notebooks for AI/ML},
    year = {2021},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/SupreethRao99/DockerML}}
}

Contributing

Feel free to make pull requests to fix bugs or add features. Please read CONTRIBUTING.md

License

DockerML is licensed under the MIT License