Skip to content

TNO PET Lab - secure Multi-Party Computation (MPC) - Protocols - Secure Comparison

License

Notifications You must be signed in to change notification settings

TNO-MPC/protocols.secure_comparison

Repository files navigation

TNO PET Lab - secure Multi-Party Computation (MPC) - Protocols - Secure Comparison

Implementation of a secure comparison protocol based on the DGK encryption scheme. The implementation follows the description of the paper Improving the DGK comparison protocol, a paper by Thijs Veugen improving upon the secure comparison protocol by Damgård, Geisler, and Krøigaard.

Note that a correction was published in Correction to "Improving the DGK comparison protocol", which is incorporated in the implementation.

PET Lab

The TNO PET Lab consists of generic software components, procedures, and functionalities developed and maintained on a regular basis to facilitate and aid in the development of PET solutions. The lab is a cross-project initiative allowing us to integrate and reuse previously developed PET functionalities to boost the development of new protocols and solutions.

The package tno.mpc.protocols.secure_comparison is part of the TNO Python Toolbox.

Limitations in (end-)use: the content of this software package may solely be used for applications that comply with international export control laws.
This implementation of cryptographic software has not been audited. Use at your own risk.

Documentation

Documentation of the tno.mpc.protocols.secure_comparison package can be found here.

Install

Easily install the tno.mpc.protocols.secure_comparison package using pip:

$ python -m pip install tno.mpc.protocols.secure_comparison

Note: If you are cloning the repository and wish to edit the source code, be sure to install the package in editable mode:

$ python -m pip install -e 'tno.mpc.protocols.secure_comparison'

If you wish to run the tests you can use:

$ python -m pip install 'tno.mpc.protocols.secure_comparison[tests]'

Note: A significant performance improvement can be achieved by installing the GMPY2 library.

$ python -m pip install 'tno.mpc.protocols.secure_comparison[gmpy]'

Usage

Usage example:

import asyncio

from tno.mpc.communication import Pool
from tno.mpc.encryption_schemes.dgk import DGK
from tno.mpc.encryption_schemes.paillier import Paillier
from tno.mpc.encryption_schemes.utils import next_prime

from tno.mpc.protocols.secure_comparison import Initiator, KeyHolder


async def run_protocol() -> None:
    taskA = asyncio.create_task(alice.perform_secure_comparison(x_enc, y_enc))
    taskB = asyncio.create_task(bob.perform_secure_comparison())

    x_leq_y_enc, _ = await asyncio.gather(*[taskA, taskB])
    x_leq_y = scheme_paillier.decrypt(x_leq_y_enc)
    assert x_leq_y == 1


if __name__ == "__main__":
    # Set maximum bit length
    l = 16
    # Setup the Paillier scheme
    scheme_paillier = Paillier.from_security_parameter(key_length=2048)
    # Setup the DGK scheme. This may take up to a minute.
    u = next_prime((1 << (l + 2)))
    scheme_dgk = DGK.from_security_parameter(
        v_bits=160, n_bits=2048, u=u, full_decryption=False
    )

    # Setup communication pools
    pool_alice = Pool()
    pool_alice.add_http_server(8040)
    pool_alice.add_http_client("keyholder", "localhost", 8041)
    pool_bob = Pool()
    pool_bob.add_http_server(8041)
    pool_bob.add_http_client("initiator", "localhost", 8040)

    # Encrypt two numbers (x,y) for the protocol and set the maximum bit_length (l)
    x = 23
    y = 42
    x_enc = scheme_paillier.unsafe_encrypt(x)
    y_enc = scheme_paillier.unsafe_encrypt(y)

    alice = Initiator(l, communicator=pool_alice, other_party="keyholder")
    bob = KeyHolder(
        l,
        communicator=pool_bob,
        other_party="initiator",
        scheme_paillier=scheme_paillier,
        scheme_dgk=scheme_dgk,
    )

    # Run entire protocol interactively:
    loop = asyncio.get_event_loop()
    loop.run_until_complete(run_protocol())

    # Or execute the protocol steps without interaction
    z_enc, r = alice.step_1(x_enc, y_enc, l, scheme_paillier)
    z, beta = bob.step_2(z_enc, l, scheme_paillier)
    alpha = alice.step_3(r, l)
    d_enc = bob.step_4a(z, scheme_dgk, scheme_paillier, l)
    beta_is_enc = bob.step_4b(beta, l, scheme_dgk)
    d_enc = alice.step_4c(d_enc, r, scheme_dgk, scheme_paillier)
    alpha_is_xor_beta_is_enc = alice.step_4d(alpha, beta_is_enc)
    w_is_enc, alpha_tilde = alice.step_4e(
        r, alpha, alpha_is_xor_beta_is_enc, d_enc, scheme_paillier
    )
    w_is_enc = alice.step_4f(w_is_enc)
    s, delta_a = alice.step_4g()
    c_is_enc = alice.step_4h(
        s, alpha, alpha_tilde, d_enc, beta_is_enc, w_is_enc, delta_a, scheme_dgk
    )
    c_is_enc = alice.step_4i(c_is_enc, scheme_dgk)
    delta_b = bob.step_4j(c_is_enc, scheme_dgk)
    zeta_1_enc, zeta_2_enc, delta_b_enc = bob.step_5(z, l, delta_b, scheme_paillier)
    beta_lt_alpha_enc = alice.step_6(delta_a, delta_b_enc)
    x_leq_y_enc = alice.step_7(
        zeta_1_enc, zeta_2_enc, r, l, beta_lt_alpha_enc, scheme_paillier
    )
    x_leq_y = scheme_paillier.decrypt(x_leq_y_enc)
    assert x_leq_y == 1

    # Shut down encryption schemes (optional but recommended)
    alice.scheme_paillier.shut_down()
    alice.scheme_dgk.shut_down()
    bob.scheme_paillier.shut_down()
    bob.scheme_dgk.shut_down()

The communicator object is required only when the protocol is ran through perform_secure_comparison. In that case, one may choose to pass any communicator object that adheres to the tno.mpc.protocols.secure_comparison.Communicator protocol. An example can be found in the unit tests.

! SAFETY NOTICE ! ENSURE CIPHERTEXTS ARE RANDOMIZED

Since version 2.0.0 of tno.mpc.encryption_schemes.paillier and tno.mpc.encryption_schemes.dgk, it is possible to (potentially) make protocols more efficient by delaying randomization of ciphertexts. This library always operates in this 'expert' mode and therefore several protocol steps yield non-randomized ciphertext outputs. As a consequence, if the user chooses to perform the secure comparison steps manually, she needs to make sure that the resulting ciphertexts are randomized before they are communicated. If the tno.mpc.communication library is used (or more specifically, the Paillier and DGK serialize methods), then this will be done automatically for you (but warnings might be raised).