ReverseAD is a simple AD tool designed for evaluating high order derivative tensors directly via reverse mode AD.
ReverseAD uses GNU automake toolchain. So you should simply be able to compile and install the package following:
autoreconf -fi
./configure --prefix=$ReverseADHOME
make; make install
Let's begin with the following example one_minute.cpp
#include <memory>
#include <iostream>
#include "reversead/reversead.hpp"
using ReverseAD::adouble;
using ReverseAD::TrivialTrace;
using ReverseAD::BaseReverseHessian;
using ReverseAD::DerivativeTensor;
using ReverseAD::trace_on;
using ReverseAD::trace_off;
template <typename T>
T foo(T x1, T x2) {
return pow(x1+1, 2) + pow(x1*x1 - x2, 2);
}
int main() {
adouble x1, x2;
adouble y;
double vy;
trace_on<double>(); // begin tracing
x1 <<= 2.0; // independent variable #0
x2 <<= 3.0; // independent variable #1
y = foo<adouble>(x1, x2); // function evaluation
y >>= vy; // dependent variable
std::shared_ptr<TrivialTrace<double>> trace =
trace_off<double>(); // end tracing
std::cout << "y = " << vy << std::endl;
std::unique_ptr<BaseReverseHessian<double>> hessian(
new BaseReverseHessian<double>(trace));
std::shared_ptr<DerivativeTensor<size_t, double>> tensor = hessian->compute(2,1);
// retrieve results
size_t size;
size_t** tind;
double* values;
// adjoints : dep[0].order[1]
tensor->get_internal_coordinate_list(0, 1, &size, &tind, &values);
std::cout << "size of adjoints = " << size << std::endl;
for (size_t i = 0; i < size; i++) {
std::cout << "A["<< tind[i][0] << "] = " << values[i] << std::endl;
}
// hessian : dep[0].order[2]
tensor->get_internal_coordinate_list(0, 2, &size, &tind, &values);
std::cout << "size of hessian = " << size << std::endl;
for (size_t i = 0; i < size; i++) {
std::cout << "H["<< tind[i][0] << ", " << tind[i][1]
<< "] = " << values[i] << std::endl;
}
}
A simple Makefile can be :
ReverseadHome = $(HOME)/packages/reversead
CXX=/usr/local/bin/g++
all : one_minute
one_minute : one_minute.cpp
$(CXX) -std=c++11 -I$(ReverseadHome)/include $^ -o $@ -L$(ReverseadHome)/lib -lreversead
The results of running previous code is :
y = 10
size of adjoints = 2
A[0] = 14
A[1] = -2
size of hessian = 3
H[0, 0] = 38
H[1, 0] = -8
H[1, 1] = 2
reversead.hpp packs all necessary header files for the package. This could be the only header file you need to include.
#include "reversead/reversead.hpp"Almost all functions, types and classes provided by ReverseAD are within namespace ReverseAD. So use using-directives for namespaces or using-declarations for namespace members to resolve references. As in the code :
using ReverseAD::adouble;
using ReverseAD::TrivialTrace;
using ReverseAD::BaseReverseHessian;
using ReverseAD::DerivativeTensor;
using ReverseAD::trace_on;
using ReverseAD::trace_off;Active Type: Variable with active type get involved in derivative evaluation. ReverseAD provides typeadoubleas the reverse active type with derivative part ofdoubletype.adoubleis also within namespaceReverseAD.Active Region: An active region defines a objective function. It should contain declaration ofindependent variables, declaration ofdependent variablesand afunction body. Foradouble, the active region begins withtrace_on<double>()and ends withtrace_off<double>().- ~Trace ~ : A
Tracereturncd bytrace_off<double>()contains all information one needs to evaluate the derivatives of thatactive region. We usestd::shared_ptr<TrivialTrace<double>>as the type of trace.
Once we get a trace for an active region, we can pass it to a derivative evaluation class to evaluate it's derivatives. In the example we uses BaseReverseHessian which evaluates the derivatives up to second order.
std::unique_ptr<BaseReverseHessian<double>> hessian(new BaseReverseHessian<double>(trace));This code creates an instance of BaseReverseHessian namely hessian.
std::shared_ptr<DerivativeTensor<size_t, double>> tensor = hessian.compute(2, 1);Then we can call the member function compute(ind_num, dep_num) to evaluate the derivatives for the trace up to second order and the results are returned into a std::shared_ptr<DerivativeTensor<size_t, double>>.
Other derivative evaluation class are given in the following table:
| Class | Order (d) | Constructor |
|---|---|---|
| BaseReverseAdjoint | 1 | BaseReverseAdjoint(trace) |
| BaseReverseHessian | 2 | BaseReverseHessian(trace) |
| BaseReverseThrid | 3 | BaseReverseThird(trace) |
| BaseReverseGeneric | 1-10 | BaseReverseGeneric(trace, d) |
| BaseReverseTensor | 1-6 | BaseReverseTensor(trace, d) |
After we call the compute(ind_num, dep_num) function of a derivative evaluation class the derivatives are stored in to a DerivativeTensor<size_t, double>. The derivative tensor of each order for each dependent variable is organized in a sparse coordinate list format. The function get_internal_coordinate_list will expose pointers to the internal array. For example:
tensor.get_internal_coordinate_list(0, 1, &size, &tind, &values);will get the size, coordinate array, value array for the first order derivative (1) for the first dependent variable (0).
tensor.get_internal_coordinate_list(0, 2, &size, &tind, &values);will get the size, coordinate array, value array for the second order derivative (2) for the first dependent variable (0). For derivative higher than first order, only the lower part of the tensor will be reported.
Do Not deallocate those pointers since they are maintained internally