A unified ensemble framework for pytorch to easily improve the performance and robustness of your deep learning model. Ensemble-PyTorch is part of the pytorch ecosystem, which requires the project to be well maintained.
pip install torchensemblefrom torchensemble import VotingClassifier  # voting is a classic ensemble strategy
# Load data
train_loader = DataLoader(...)
test_loader = DataLoader(...)
# Define the ensemble
ensemble = VotingClassifier(
    estimator=base_estimator,               # estimator is your pytorch model
    n_estimators=10,                        # number of base estimators
)
# Set the optimizer
ensemble.set_optimizer(
    "Adam",                                 # type of parameter optimizer
    lr=learning_rate,                       # learning rate of parameter optimizer
    weight_decay=weight_decay,              # weight decay of parameter optimizer
)
# Set the learning rate scheduler
ensemble.set_scheduler(
    "CosineAnnealingLR",                    # type of learning rate scheduler
    T_max=epochs,                           # additional arguments on the scheduler
)
# Train the ensemble
ensemble.fit(
    train_loader,
    epochs=epochs,                          # number of training epochs
)
# Evaluate the ensemble
acc = ensemble.evaluate(test_loader)         # testing accuracy| Ensemble Name | Type | Source Code | Problem | 
|---|---|---|---|
| Fusion | Mixed | fusion.py | Classification / Regression | 
| Voting [1] | Parallel | voting.py | Classification / Regression | 
| Neural Forest | Parallel | voting.py | Classification / Regression | 
| Bagging [2] | Parallel | bagging.py | Classification / Regression | 
| Gradient Boosting [3] | Sequential | gradient_boosting.py | Classification / Regression | 
| Snapshot Ensemble [4] | Sequential | snapshot_ensemble.py | Classification / Regression | 
| Adversarial Training [5] | Parallel | adversarial_training.py | Classification / Regression | 
| Fast Geometric Ensemble [6] | Sequential | fast_geometric.py | Classification / Regression | 
| Soft Gradient Boosting [7] | Parallel | soft_gradient_boosting.py | Classification / Regression | 
- scikit-learn>=0.23.0
- torch>=1.4.0
- torchvision>=0.2.2
| [1] | Zhou, Zhi-Hua. Ensemble Methods: Foundations and Algorithms. CRC press, 2012. | 
| [2] | Breiman, Leo. Bagging Predictors. Machine Learning (1996): 123-140. | 
| [3] | Friedman, Jerome H. Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics (2001): 1189-1232. | 
| [4] | Huang, Gao, et al. Snapshot Ensembles: Train 1, Get M For Free. ICLR, 2017. | 
| [5] | Lakshminarayanan, Balaji, et al. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. NIPS, 2017. | 
| [6] | Garipov, Timur, et al. Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. NeurIPS, 2018. | 
| [7] | Feng, Ji, et al. Soft Gradient Boosting Machine. ArXiv, 2020. | 
