-
Notifications
You must be signed in to change notification settings - Fork 42
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Generalized leapfrog integrator (#370)
* feat: port generalized leapfrog Signed-off-by: Kai Xu <[email protected]> * refactor: remove copy Signed-off-by: Kai Xu <[email protected]> * format: add emplty line Signed-off-by: Kai Xu <[email protected]> * Update src/riemannian/integrator.jl Co-authored-by: Hong Ge <[email protected]> * chore: add warning for using generalized leapfrog with vectorization Signed-off-by: Kai Xu <[email protected]> * fix: type order Signed-off-by: Kai Xu <[email protected]> --------- Signed-off-by: Kai Xu <[email protected]> Co-authored-by: Hong Ge <[email protected]>
- Loading branch information
Showing
2 changed files
with
104 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
""" | ||
$(TYPEDEF) | ||
Generalized leapfrog integrator with fixed step size `ϵ`. | ||
# Fields | ||
$(TYPEDFIELDS) | ||
## References | ||
1. Girolami, Mark, and Ben Calderhead. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods." Journal of the Royal Statistical Society Series B: Statistical Methodology 73, no. 2 (2011): 123-214. | ||
""" | ||
struct GeneralizedLeapfrog{T<:AbstractScalarOrVec{<:AbstractFloat}} <: AbstractLeapfrog{T} | ||
"Step size." | ||
ϵ::T | ||
n::Int | ||
end | ||
Base.show(io::IO, l::GeneralizedLeapfrog) = | ||
print(io, "GeneralizedLeapfrog(ϵ=$(round.(l.ϵ; sigdigits=3)), n=$(l.n))") | ||
|
||
# fallback to ignore return_cache & cache kwargs for other ∂H∂θ | ||
function ∂H∂θ_cache(h, θ, r; return_cache = false, cache = nothing) | ||
dv = ∂H∂θ(h, θ, r) | ||
return return_cache ? (dv, nothing) : dv | ||
end | ||
|
||
# TODO(Kai) make sure vectorization works | ||
# TODO(Kai) check if tempering is valid | ||
# TODO(Kai) abstract out the 3 main steps and merge with `step` in `integrator.jl` | ||
function step( | ||
lf::GeneralizedLeapfrog{T}, | ||
h::Hamiltonian, | ||
z::P, | ||
n_steps::Int = 1; | ||
fwd::Bool = n_steps > 0, # simulate hamiltonian backward when n_steps < 0 | ||
full_trajectory::Val{FullTraj} = Val(false), | ||
) where {T<:AbstractScalarOrVec{<:AbstractFloat},TP,P<:PhasePoint{TP},FullTraj} | ||
n_steps = abs(n_steps) # to support `n_steps < 0` cases | ||
|
||
ϵ = fwd ? step_size(lf) : -step_size(lf) | ||
ϵ = ϵ' | ||
|
||
if !(T <: AbstractFloat) || !(TP <: AbstractVector) | ||
@warn "Vectorization is not tested for GeneralizedLeapfrog." | ||
end | ||
|
||
res = if FullTraj | ||
Vector{P}(undef, n_steps) | ||
else | ||
z | ||
end | ||
|
||
for i = 1:n_steps | ||
θ_init, r_init = z.θ, z.r | ||
# Tempering | ||
#r = temper(lf, r, (i=i, is_half=true), n_steps) | ||
# eq (16) of Girolami & Calderhead (2011) | ||
r_half = r_init | ||
local cache | ||
for j = 1:lf.n | ||
# Reuse cache for the first iteration | ||
if j == 1 | ||
@unpack value, gradient = z.ℓπ | ||
elseif j == 2 # cache intermediate values that depends on θ only (which are unchanged) | ||
retval, cache = ∂H∂θ_cache(h, θ_init, r_half; return_cache = true) | ||
@unpack value, gradient = retval | ||
else # reuse cache | ||
@unpack value, gradient = ∂H∂θ_cache(h, θ_init, r_half; cache = cache) | ||
end | ||
r_half = r_init - ϵ / 2 * gradient | ||
end | ||
# eq (17) of Girolami & Calderhead (2011) | ||
θ_full = θ_init | ||
term_1 = ∂H∂r(h, θ_init, r_half) # unchanged across the loop | ||
for j = 1:lf.n | ||
θ_full = θ_init + ϵ / 2 * (term_1 + ∂H∂r(h, θ_full, r_half)) | ||
end | ||
# eq (18) of Girolami & Calderhead (2011) | ||
@unpack value, gradient = ∂H∂θ(h, θ_full, r_half) | ||
r_full = r_half - ϵ / 2 * gradient | ||
# Tempering | ||
#r = temper(lf, r, (i=i, is_half=false), n_steps) | ||
# Create a new phase point by caching the logdensity and gradient | ||
z = phasepoint(h, θ_full, r_full; ℓπ = DualValue(value, gradient)) | ||
# Update result | ||
if FullTraj | ||
res[i] = z | ||
else | ||
res = z | ||
end | ||
if !isfinite(z) | ||
# Remove undef | ||
if FullTraj | ||
res = res[isassigned.(Ref(res), 1:n_steps)] | ||
end | ||
break | ||
end | ||
end | ||
return res | ||
end |