Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

New Feature: Fix and improve coeftable for optimize() output #2034

Merged
merged 11 commits into from
Jul 12, 2023
4 changes: 3 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "Turing"
uuid = "fce5fe82-541a-59a6-adf8-730c64b5f9a0"
version = "0.26.3"
version = "0.26.4"

[deps]
AbstractMCMC = "80f14c24-f653-4e6a-9b94-39d6b0f70001"
Expand Down Expand Up @@ -32,6 +32,7 @@ SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462"
Setfield = "efcf1570-3423-57d1-acb7-fd33fddbac46"
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
StatsAPI = "82ae8749-77ed-4fe6-ae5f-f523153014b0"
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
StatsFuns = "4c63d2b9-4356-54db-8cca-17b64c39e42c"
Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c"
Expand Down Expand Up @@ -62,6 +63,7 @@ Requires = "0.5, 1.0"
SciMLBase = "1.37.1"
Setfield = "0.8, 1"
SpecialFunctions = "0.7.2, 0.8, 0.9, 0.10, 1, 2"
StatsAPI = "1.6"
StatsBase = "0.32, 0.33, 0.34"
StatsFuns = "0.8, 0.9, 1"
Tracker = "0.2.3"
Expand Down
102 changes: 56 additions & 46 deletions src/modes/OptimInterface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,31 +7,32 @@ import ..ForwardDiff
import NamedArrays
import StatsBase
import Printf
import StatsAPI
yebai marked this conversation as resolved.
Show resolved Hide resolved


"""
ModeResult{
V<:NamedArrays.NamedArray,
M<:NamedArrays.NamedArray,
O<:Optim.MultivariateOptimizationResults,
V<:NamedArrays.NamedArray,
M<:NamedArrays.NamedArray,
O<:Optim.MultivariateOptimizationResults,
S<:NamedArrays.NamedArray
}

A wrapper struct to store various results from a MAP or MLE estimation.
"""
struct ModeResult{
V<:NamedArrays.NamedArray,
V<:NamedArrays.NamedArray,
O<:Optim.MultivariateOptimizationResults,
M<:OptimLogDensity
} <: StatsBase.StatisticalModel
"A vector with the resulting point estimates."
values :: V
values::V
"The stored Optim.jl results."
optim_result :: O
optim_result::O
"The final log likelihood or log joint, depending on whether `MAP` or `MLE` was run."
lp :: Float64
lp::Float64
"The evaluation function used to calculate the output."
f :: M
f::M
end
#############################
# Various StatsBase methods #
Expand All @@ -50,14 +51,23 @@ function Base.show(io::IO, m::ModeResult)
show(io, m.values.array)
end

function StatsBase.coeftable(m::ModeResult)
function StatsBase.coeftable(m::ModeResult; level::Real=0.95)
# Get columns for coeftable.
terms = StatsBase.coefnames(m)
estimates = m.values.array[:,1]
terms = string.(StatsBase.coefnames(m))
estimates = m.values.array[:, 1]
stderrors = StatsBase.stderror(m)
tstats = estimates ./ stderrors

StatsBase.CoefTable([estimates, stderrors, tstats], ["estimate", "stderror", "tstat"], terms)
zscore = estimates ./ stderrors
p = StatsAPI.pvalue(Normal(), zscore; tail=:both)
yebai marked this conversation as resolved.
Show resolved Hide resolved

# Confidence interval (CI)
q = quantile(Normal(), (1 + level) / 2)
ci_low = estimates .- q .* stderrors
ci_high = estimates .+ q .* stderrors

StatsBase.CoefTable(
[estimates, stderrors, zscore, p, ci_low, ci_high],
["Coef.", "Std. Error", "z", "Pr(>|z|)", "Lower 95%", "Upper 95%"],
terms)
end

function StatsBase.informationmatrix(m::ModeResult; hessian_function=ForwardDiff.hessian, kwargs...)
Expand Down Expand Up @@ -113,7 +123,7 @@ mle = optimize(model, MLE())
mle = optimize(model, MLE(), NelderMead())
```
"""
function Optim.optimize(model::Model, ::MLE, options::Optim.Options=Optim.Options(); kwargs...)
function Optim.optimize(model::Model, ::MLE, options::Optim.Options=Optim.Options(); kwargs...)
return _mle_optimize(model, options; kwargs...)
end
function Optim.optimize(model::Model, ::MLE, init_vals::AbstractArray, options::Optim.Options=Optim.Options(); kwargs...)
Expand All @@ -123,11 +133,11 @@ function Optim.optimize(model::Model, ::MLE, optimizer::Optim.AbstractOptimizer,
return _mle_optimize(model, optimizer, options; kwargs...)
end
function Optim.optimize(
model::Model,
::MLE,
init_vals::AbstractArray,
optimizer::Optim.AbstractOptimizer,
options::Optim.Options=Optim.Options();
model::Model,
::MLE,
init_vals::AbstractArray,
optimizer::Optim.AbstractOptimizer,
options::Optim.Options=Optim.Options();
kwargs...
)
return _mle_optimize(model, init_vals, optimizer, options; kwargs...)
Expand Down Expand Up @@ -159,7 +169,7 @@ map_est = optimize(model, MAP(), NelderMead())
```
"""

function Optim.optimize(model::Model, ::MAP, options::Optim.Options=Optim.Options(); kwargs...)
function Optim.optimize(model::Model, ::MAP, options::Optim.Options=Optim.Options(); kwargs...)
return _map_optimize(model, options; kwargs...)
end
function Optim.optimize(model::Model, ::MAP, init_vals::AbstractArray, options::Optim.Options=Optim.Options(); kwargs...)
Expand All @@ -169,11 +179,11 @@ function Optim.optimize(model::Model, ::MAP, optimizer::Optim.AbstractOptimizer,
return _map_optimize(model, optimizer, options; kwargs...)
end
function Optim.optimize(
model::Model,
::MAP,
init_vals::AbstractArray,
optimizer::Optim.AbstractOptimizer,
options::Optim.Options=Optim.Options();
model::Model,
::MAP,
init_vals::AbstractArray,
optimizer::Optim.AbstractOptimizer,
options::Optim.Options=Optim.Options();
kwargs...
)
return _map_optimize(model, init_vals, optimizer, options; kwargs...)
Expand All @@ -190,43 +200,43 @@ end
Estimate a mode, i.e., compute a MLE or MAP estimate.
"""
function _optimize(
model::Model,
f::OptimLogDensity,
optimizer::Optim.AbstractOptimizer = Optim.LBFGS(),
args...;
model::Model,
f::OptimLogDensity,
optimizer::Optim.AbstractOptimizer=Optim.LBFGS(),
args...;
kwargs...
)
return _optimize(model, f, DynamicPPL.getparams(f), optimizer, args...; kwargs...)
end

function _optimize(
model::Model,
f::OptimLogDensity,
options::Optim.Options = Optim.Options(),
args...;
model::Model,
f::OptimLogDensity,
options::Optim.Options=Optim.Options(),
args...;
kwargs...
)
return _optimize(model, f, DynamicPPL.getparams(f), Optim.LBFGS(), args...; kwargs...)
end

function _optimize(
model::Model,
f::OptimLogDensity,
init_vals::AbstractArray = DynamicPPL.getparams(f),
options::Optim.Options = Optim.Options(),
args...;
model::Model,
f::OptimLogDensity,
init_vals::AbstractArray=DynamicPPL.getparams(f),
options::Optim.Options=Optim.Options(),
args...;
kwargs...
)
return _optimize(model, f, init_vals, Optim.LBFGS(), options, args...; kwargs...)
end

function _optimize(
model::Model,
f::OptimLogDensity,
init_vals::AbstractArray = DynamicPPL.getparams(f),
optimizer::Optim.AbstractOptimizer = Optim.LBFGS(),
options::Optim.Options = Optim.Options(),
args...;
model::Model,
f::OptimLogDensity,
init_vals::AbstractArray=DynamicPPL.getparams(f),
optimizer::Optim.AbstractOptimizer=Optim.LBFGS(),
options::Optim.Options=Optim.Options(),
args...;
kwargs...
)
# Convert the initial values, since it is assumed that users provide them
Expand All @@ -243,7 +253,7 @@ function _optimize(
@warn "Optimization did not converge! You may need to correct your model or adjust the Optim parameters."
end

# Get the VarInfo at the MLE/MAP point, and run the model to ensure
# Get the VarInfo at the MLE/MAP point, and run the model to ensure
# correct dimensionality.
@set! f.varinfo = DynamicPPL.unflatten(f.varinfo, M.minimizer)
@set! f.varinfo = invlink!!(f.varinfo, model)
Expand Down