Skip to content

Commit

Permalink
Add doc_groups filtering support in vector retrieval (#239)
Browse files Browse the repository at this point in the history
* Add support for filtering documents by doc_groups in retrieval service

* Fix filter bug and handle doc_groups as JSON string

* Increase Qdrant timeout from defualt 5s to 20s. Getting timeout err w/ doc groups.

* Fix: Don't use mutable datastructures (lists) as default arguments

---------

Co-authored-by: Kastan Day <[email protected]>
  • Loading branch information
rohan-uiuc and KastanDay authored Apr 6, 2024
1 parent 05a59ca commit b01b4ef
Show file tree
Hide file tree
Showing 3 changed files with 39 additions and 12 deletions.
23 changes: 16 additions & 7 deletions ai_ta_backend/database/vector.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import os
from typing import List

from injector import inject
from langchain.embeddings.openai import OpenAIEmbeddings
Expand All @@ -22,19 +23,27 @@ def __init__(self):
self.qdrant_client = QdrantClient(
url=os.environ['QDRANT_URL'],
api_key=os.environ['QDRANT_API_KEY'],
timeout=20, # default is 5 seconds. Getting timeout errors w/ document groups.
)

self.vectorstore = Qdrant(client=self.qdrant_client,
collection_name=os.environ['QDRANT_COLLECTION_NAME'],
embeddings=OpenAIEmbeddings(openai_api_type=OPENAI_API_TYPE))
self.vectorstore = Qdrant(
client=self.qdrant_client,
collection_name=os.environ['QDRANT_COLLECTION_NAME'],
embeddings=OpenAIEmbeddings(openai_api_type=OPENAI_API_TYPE),
)

def vector_search(self, search_query, course_name, user_query_embedding, top_n):
def vector_search(self, search_query, course_name, doc_groups: List[str], user_query_embedding, top_n):
"""
Search the vector database for a given query.
"""
myfilter = models.Filter(must=[
models.FieldCondition(key='course_name', match=models.MatchValue(value=course_name)),
])
# print(f"Searching for: {search_query} with doc_groups: {doc_groups}")
must_conditions: list[models.Condition] = [
models.FieldCondition(key='course_name', match=models.MatchValue(value=course_name))
]
if doc_groups and doc_groups != []:
must_conditions.append(models.FieldCondition(key='doc_groups', match=models.MatchAny(any=doc_groups)))
myfilter = models.Filter(must=must_conditions)
print(f"Filter: {myfilter}")
search_results = self.qdrant_client.search(
collection_name=os.environ['QDRANT_COLLECTION_NAME'],
query_filter=myfilter,
Expand Down
9 changes: 8 additions & 1 deletion ai_ta_backend/main.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import json
import os
import time
from typing import List
Expand Down Expand Up @@ -105,6 +106,7 @@ def getTopContexts(service: RetrievalService) -> Response:
search_query: str = request.args.get('search_query', default='', type=str)
course_name: str = request.args.get('course_name', default='', type=str)
token_limit: int = request.args.get('token_limit', default=3000, type=int)
doc_groups_str: str = request.args.get('doc_groups', default='[]', type=str)
if search_query == '' or course_name == '':
# proper web error "400 Bad request"
abort(
Expand All @@ -113,7 +115,12 @@ def getTopContexts(service: RetrievalService) -> Response:
f"Missing one or more required parameters: 'search_query' and 'course_name' must be provided. Search query: `{search_query}`, Course name: `{course_name}`"
)

found_documents = service.getTopContexts(search_query, course_name, token_limit)
doc_groups: List[str] = []

if doc_groups_str != '[]':
doc_groups = json.loads(doc_groups_str)

found_documents = service.getTopContexts(search_query, course_name, token_limit, doc_groups)

response = jsonify(found_documents)
response.headers.add('Access-Control-Allow-Origin', '*')
Expand Down
19 changes: 15 additions & 4 deletions ai_ta_backend/service/retrieval_service.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,11 @@ def __init__(self, vdb: VectorDatabase, sqlDb: SQLDatabase, aws: AWSStorage, pos
openai_api_type=os.environ['OPENAI_API_TYPE'],
)

def getTopContexts(self, search_query: str, course_name: str, token_limit: int = 4_000) -> Union[List[Dict], str]:
def getTopContexts(self,
search_query: str,
course_name: str,
token_limit: int = 4_000,
doc_groups: List[str] | None = None) -> Union[List[Dict], str]:
"""Here's a summary of the work.
/GET arguments
Expand All @@ -64,10 +68,14 @@ def getTopContexts(self, search_query: str, course_name: str, token_limit: int =
or
String: An error message with traceback.
"""
if doc_groups is None:
doc_groups = []
try:
start_time_overall = time.monotonic()

found_docs: list[Document] = self.vector_search(search_query=search_query, course_name=course_name)
found_docs: list[Document] = self.vector_search(search_query=search_query,
course_name=course_name,
doc_groups=doc_groups)

pre_prompt = "Please answer the following question. Use the context below, called your documents, only if it's helpful and don't use parts that are very irrelevant. It's good to quote from your documents directly, when you do always use Markdown footnotes for citations. Use react-markdown superscript to number the sources at the end of sentences (1, 2, 3...) and use react-markdown Footnotes to list the full document names for each number. Use ReactMarkdown aka 'react-markdown' formatting for super script citations, use semi-formal style. Feel free to say you don't know. \nHere's a few passages of the high quality documents:\n"
# count tokens at start and end, then also count each context.
Expand Down Expand Up @@ -339,7 +347,9 @@ def delete_from_nomic_and_supabase(self, course_name: str, identifier_key: str,
print(f"Supabase Error in delete. {identifier_key}: {identifier_value}", e)
self.sentry.capture_exception(e)

def vector_search(self, search_query, course_name):
def vector_search(self, search_query, course_name, doc_groups: List[str] | None = None):
if doc_groups is None:
doc_groups = []
top_n = 80
# EMBED
openai_start_time = time.monotonic()
Expand All @@ -352,10 +362,11 @@ def vector_search(self, search_query, course_name):
properties={
"user_query": search_query,
"course_name": course_name,
"doc_groups": doc_groups,
},
)
qdrant_start_time = time.monotonic()
search_results = self.vdb.vector_search(search_query, course_name, user_query_embedding, top_n)
search_results = self.vdb.vector_search(search_query, course_name, doc_groups, user_query_embedding, top_n)

found_docs: list[Document] = []
for d in search_results:
Expand Down

0 comments on commit b01b4ef

Please sign in to comment.