Skip to content

Commit

Permalink
ran pre-commit for cleaning things up. more manual labor to do, however
Browse files Browse the repository at this point in the history
  • Loading branch information
djspacewhale committed Feb 15, 2025
1 parent c1e4699 commit 14a7113
Show file tree
Hide file tree
Showing 4 changed files with 39 additions and 17 deletions.
5 changes: 5 additions & 0 deletions src/group-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,9 @@ open import group-theory.kernels-homomorphisms-abelian-groups public
open import group-theory.kernels-homomorphisms-concrete-groups public
open import group-theory.kernels-homomorphisms-groups public
open import group-theory.large-semigroups public
open import group-theory.left-quasigroups public
open import group-theory.loop-groups-sets public
open import group-theory.loops public
open import group-theory.mere-equivalences-concrete-group-actions public
open import group-theory.mere-equivalences-group-actions public
open import group-theory.minkowski-multiplication-commutative-monoids public
Expand Down Expand Up @@ -158,11 +160,13 @@ open import group-theory.products-of-elements-monoids public
open import group-theory.products-of-tuples-of-elements-commutative-monoids public
open import group-theory.pullbacks-subgroups public
open import group-theory.pullbacks-subsemigroups public
open import group-theory.quasigroups public
open import group-theory.quotient-groups public
open import group-theory.quotient-groups-concrete-groups public
open import group-theory.quotients-abelian-groups public
open import group-theory.rational-commutative-monoids public
open import group-theory.representations-monoids-precategories public
open import group-theory.right-quasigroups public
open import group-theory.saturated-congruence-relations-commutative-monoids public
open import group-theory.saturated-congruence-relations-monoids public
open import group-theory.semigroups public
Expand Down Expand Up @@ -199,6 +203,7 @@ open import group-theory.trivial-concrete-groups public
open import group-theory.trivial-group-homomorphisms public
open import group-theory.trivial-groups public
open import group-theory.trivial-subgroups public
open import group-theory.units-quasigroups public
open import group-theory.unordered-tuples-of-elements-commutative-monoids public
open import group-theory.wild-representations-monoids public
```
18 changes: 12 additions & 6 deletions src/group-theory/left-quasigroups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,20 +41,26 @@ module _
is-left-cancellative-left-div = (x y : type-Set Q) y = mul x (left-div x y)

is-prop-is-left-cancellative-left-div : is-prop is-left-cancellative-left-div
is-prop-is-left-cancellative-left-div = is-prop-Π (λ x is-prop-Π (λ y is-set-type-Set Q y (mul x (left-div x y))))
is-prop-is-left-cancellative-left-div =
is-prop-Π (λ x is-prop-Π (λ y is-set-type-Set Q y (mul x (left-div x y))))

is-right-cancellative-left-div : UU l
is-right-cancellative-left-div = (x y : type-Set Q) y = left-div x (mul x y)

is-prop-is-right-cancellative-left-div : is-prop is-right-cancellative-left-div
is-prop-is-right-cancellative-left-div = is-prop-Π (λ x is-prop-Π (λ y is-set-type-Set Q y (left-div x (mul x y))))
is-prop-is-right-cancellative-left-div :
is-prop is-right-cancellative-left-div
is-prop-is-right-cancellative-left-div =
is-prop-Π (λ x is-prop-Π (λ y is-set-type-Set Q y (left-div x (mul x y))))

is-left-Quasigroup : UU l
is-left-Quasigroup = is-left-cancellative-left-div × is-right-cancellative-left-div
is-left-Quasigroup =
is-left-cancellative-left-div × is-right-cancellative-left-div

is-prop-is-left-Quasigroup : is-prop is-left-Quasigroup
is-prop-is-left-Quasigroup = is-prop-Σ is-prop-is-left-cancellative-left-div (λ _ is-prop-is-right-cancellative-left-div)
is-prop-is-left-Quasigroup =
is-prop-Σ is-prop-is-left-cancellative-left-div (λ _ is-prop-is-right-cancellative-left-div)

left-Quasigroup : (l : Level) UU (lsuc l)
left-Quasigroup l = Σ (Set l) (λ Q Σ (type-Set Q type-Set Q type-Set Q) (λ mul Σ (type-Set Q type-Set Q type-Set Q) λ left-div is-left-Quasigroup Q mul left-div))
left-Quasigroup l =
Σ (Set l) (λ Q Σ (type-Set Q type-Set Q type-Set Q) (λ mul Σ (type-Set Q type-Set Q type-Set Q) λ left-div is-left-Quasigroup Q mul left-div))
```
6 changes: 4 additions & 2 deletions src/group-theory/loops.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,8 @@ module _
has-left-unit-Quasigroup =
Σ (type-Quasigroup Q) λ e is-left-unit-Quasigroup e

element-has-left-unit-Quasigroup : has-left-unit-Quasigroup type-Quasigroup Q
element-has-left-unit-Quasigroup :
has-left-unit-Quasigroup type-Quasigroup Q
element-has-left-unit-Quasigroup (e , _) = e

left-units-agree-Quasigroup :
Expand Down Expand Up @@ -128,7 +129,8 @@ module _
has-right-unit-Quasigroup =
Σ (type-Quasigroup Q) λ e is-right-unit-Quasigroup e

element-has-right-unit-Quasigroup : has-right-unit-Quasigroup type-Quasigroup Q
element-has-right-unit-Quasigroup :
has-right-unit-Quasigroup type-Quasigroup Q
element-has-right-unit-Quasigroup (e , _) = e

right-units-agree-Quasigroup :
Expand Down
27 changes: 18 additions & 9 deletions src/group-theory/right-quasigroups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,23 +37,32 @@ module _
where

is-left-cancellative-right-div : UU l
is-left-cancellative-right-div = (x y : type-Set Q) y = mul (right-div y x) x
is-left-cancellative-right-div =
(x y : type-Set Q) y = mul (right-div y x) x

is-prop-is-left-cancellative-right-div : is-prop is-left-cancellative-right-div
is-prop-is-left-cancellative-right-div = is-prop-Π (λ x is-prop-Π (λ y is-set-type-Set Q y (mul (right-div y x) x)))
is-prop-is-left-cancellative-right-div :
is-prop is-left-cancellative-right-div
is-prop-is-left-cancellative-right-div =
is-prop-Π (λ x is-prop-Π (λ y is-set-type-Set Q y (mul (right-div y x) x)))

is-right-cancellative-right-div : UU l
is-right-cancellative-right-div = (x y : type-Set Q) y = right-div (mul y x) x
is-right-cancellative-right-div =
(x y : type-Set Q) y = right-div (mul y x) x

is-prop-is-right-cancellative-right-div : is-prop is-right-cancellative-right-div
is-prop-is-right-cancellative-right-div = is-prop-Π (λ x is-prop-Π (λ y is-set-type-Set Q y (right-div (mul y x) x)))
is-prop-is-right-cancellative-right-div :
is-prop is-right-cancellative-right-div
is-prop-is-right-cancellative-right-div =
is-prop-Π (λ x is-prop-Π (λ y is-set-type-Set Q y (right-div (mul y x) x)))

is-right-Quasigroup : UU l
is-right-Quasigroup = is-left-cancellative-right-div × is-right-cancellative-right-div
is-right-Quasigroup =
is-left-cancellative-right-div × is-right-cancellative-right-div

is-prop-is-right-Quasigroup : is-prop is-right-Quasigroup
is-prop-is-right-Quasigroup = is-prop-Σ is-prop-is-left-cancellative-right-div (λ _ is-prop-is-right-cancellative-right-div)
is-prop-is-right-Quasigroup =
is-prop-Σ is-prop-is-left-cancellative-right-div (λ _ is-prop-is-right-cancellative-right-div)

right-Quasigroup : (l : Level) UU (lsuc l)
right-Quasigroup l = Σ (Set l) (λ Q Σ (type-Set Q type-Set Q type-Set Q) (λ mul Σ (type-Set Q type-Set Q type-Set Q) λ right-div is-right-Quasigroup Q mul right-div))
right-Quasigroup l =
Σ (Set l) (λ Q Σ (type-Set Q type-Set Q type-Set Q) (λ mul Σ (type-Set Q type-Set Q type-Set Q) λ right-div is-right-Quasigroup Q mul right-div))
```

0 comments on commit 14a7113

Please sign in to comment.