@@ -27,8 +27,8 @@ open import foundation-core.transport-along-identifications
2727
2828## Idea
2929
30- Contractible types are types that have, up to identification, exactly one
31- element.
30+ {{#concept " Contractible types" Agda=is-contr}} are types that have, up to
31+ [ identification ] ( foundation-core.identity-types.md ) , exactly one element.
3232
3333## Definition
3434
@@ -93,8 +93,7 @@ module _
9393
9494 abstract
9595 is-contr-equiv : A ≃ B → is-contr B → is-contr A
96- is-contr-equiv (e , is-equiv-e) is-contr-B =
97- is-contr-is-equiv e is-equiv-e is-contr-B
96+ is-contr-equiv (e , is-equiv-e) = is-contr-is-equiv e is-equiv-e
9897
9998module _
10099 {l1 l2 : Level} (A : UU l1) {B : UU l2}
@@ -103,16 +102,14 @@ module _
103102 abstract
104103 is-contr-is-equiv' :
105104 (f : A → B) → is-equiv f → is-contr A → is-contr B
106- is-contr-is-equiv' f is-equiv-f is-contr-A =
105+ is-contr-is-equiv' f is-equiv-f =
107106 is-contr-is-equiv A
108107 ( map-inv-is-equiv is-equiv-f)
109108 ( is-equiv-map-inv-is-equiv is-equiv-f)
110- ( is-contr-A)
111109
112110 abstract
113111 is-contr-equiv' : (e : A ≃ B) → is-contr A → is-contr B
114- is-contr-equiv' (pair e is-equiv-e) is-contr-A =
115- is-contr-is-equiv' e is-equiv-e is-contr-A
112+ is-contr-equiv' (e , is-equiv-e) = is-contr-is-equiv' e is-equiv-e
116113
117114module _
118115 {l1 l2 : Level} {A : UU l1} {B : UU l2}
@@ -128,7 +125,8 @@ module _
128125 ( contraction is-contr-A)
129126
130127 equiv-is-contr : is-contr A → is-contr B → A ≃ B
131- pr1 (equiv-is-contr is-contr-A is-contr-B) a = center is-contr-B
128+ pr1 (equiv-is-contr is-contr-A is-contr-B) a =
129+ center is-contr-B
132130 pr2 (equiv-is-contr is-contr-A is-contr-B) =
133131 is-equiv-is-contr _ is-contr-A is-contr-B
134132```
0 commit comments