Skip to content

Commit

Permalink
Concatenation laws for strict and nonstrict inequality on the reals (#…
Browse files Browse the repository at this point in the history
  • Loading branch information
lowasser authored Feb 6, 2025
1 parent c6b929a commit 8440b84
Showing 1 changed file with 36 additions and 1 deletion.
37 changes: 36 additions & 1 deletion src/real-numbers/strict-inequality-real-numbers.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ open import foundation.transport-along-identifications
open import foundation.universe-levels

open import real-numbers.dedekind-real-numbers
open import real-numbers.inequality-real-numbers
open import real-numbers.negation-real-numbers
open import real-numbers.rational-real-numbers
```
Expand Down Expand Up @@ -148,6 +149,40 @@ preserves-le-real-ℚ x y x<y =
( le-left-mediant-ℚ x y x<y , le-right-mediant-ℚ x y x<y)
```

### Concatenation rules for inequality and strict inequality on the real numbers

```agda
module _
{l1 l2 l3 : Level}
(x : ℝ l1)
(y : ℝ l2)
(z : ℝ l3)
where

concatenate-le-leq-ℝ : le-ℝ x y leq-ℝ y z le-ℝ x z
concatenate-le-leq-ℝ x<y y≤z =
elim-exists
( le-ℝ-Prop x z)
( λ p (p-in-upper-x , p-in-lower-y)
intro-exists p (p-in-upper-x , y≤z p p-in-lower-y))
( x<y)

concatenate-leq-le-ℝ : leq-ℝ x y le-ℝ y z le-ℝ x z
concatenate-leq-le-ℝ x≤y y<z =
elim-exists
( le-ℝ-Prop x z)
( λ p (p-in-upper-y , p-in-lower-z)
intro-exists
( p)
( forward-implication
( leq-iff-ℝ' x y)
( x≤y)
( p)
( p-in-upper-y) ,
p-in-lower-z))
( y<z)
```

### The reals have no lower or upper bound

```agda
Expand Down Expand Up @@ -202,4 +237,4 @@ module _

## References

{­{#bibliography}}
{{#bibliography}}

0 comments on commit 8440b84

Please sign in to comment.