Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: Fix links in 100-theorems #1321

Merged
merged 7 commits into from
Feb 14, 2025
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ The **binomial theorem** in commutative rings asserts that for any two elements
```

The binomial theorem is the 44th theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

## Definitions
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ we have
```

The binomial theorem is the 44th theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

## Definitions
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ open import foundation.unit-type
</details>

Bézout's Lemma is the 60th theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. It was
originally added to agda-unimath by [Bryan Lu](https://blu-bird.github.io).

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ is decidable, because `P z ⇔ [y]_x | [z]_x` in `ℤ/x`. The least positive `z`
such that `P z` holds is `gcd x y`.

Bézout's Lemma is the 60th theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}. It was
originally added to agda-unimath by [Bryan Lu](https://blu-bird.github.io).

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ The binomial theorem for the integers asserts that for any two integers `x` and
```

The binomial theorem is the 44th theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

## Definitions
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ numbers `x` and `y` and any natural number `n`, we have
```

The binomial theorem is the 44th theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

## Definitions
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@ Note that the [univalence axiom](foundation-core.univalence.md) is neccessary to
prove the second uniqueness property of prime factorizations.

The fundamental theorem of arithmetic is the 80th theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

## Definitions
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ The greatest common divisor of two natural numbers `x` and `y` is a number
`y` if and only if it is a divisor of `gcd x y`.

The algorithm defining the greatest common divisor is the 69th theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

## Definition
Expand Down
2 changes: 1 addition & 1 deletion src/elementary-number-theory/infinitude-of-primes.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ function that returns for each `n` the `n`-th prime, and we obtain the function
that counts the number of primes below a number `n`.

The infinitude of primes is the 11th theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

## Definition
Expand Down
2 changes: 1 addition & 1 deletion src/elementary-number-theory/natural-numbers.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ is-not-one-ℕ' n = ¬ (is-one-ℕ' n)
### The induction principle of ℕ

The induction principle of the natural numbers is the 74th theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

```agda
Expand Down
2 changes: 1 addition & 1 deletion src/elementary-number-theory/rational-numbers.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -206,7 +206,7 @@ retract-integer-fraction-ℚ =
### The rationals are countable

The denumerability of the rational numbers is the third theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

```agda
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/cantor-schroder-bernstein-escardo.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ Escardó proved that a Cantor–Schröder–Bernstein theorem also holds for
[equivalent](foundation-core.equivalences.md). {{#cite Esc21}}

The Cantor–Schröder–Bernstein theorem is the 25th theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

## Statement
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/cantors-theorem.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ would have to be a fixed point of the negation operation, since
but negation has no fixed points.

Cantor's theorem is the 63rd theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

```agda
Expand Down
30 changes: 15 additions & 15 deletions src/literature/100-theorems.lagda.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# Freek Wiedijk's 100 Theorems

This file records formalized results from
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/)
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s
[_Formalizing 100 Theorems_](https://www.cs.ru.nl/~freek/100/).
{{#cite 100theorems}}

Expand All @@ -11,7 +11,7 @@ module literature.100-theorems where

## The list

### [3. The Denumerability of the Rational Numbers](https://www.cs.ru.nl/~freek/100/#3) {#3}
### 3. The Denumerability of the Rational Numbers [(#3)](https://www.cs.ru.nl/~freek/100/#3) {#3}
fredrik-bakke marked this conversation as resolved.
Show resolved Hide resolved

**Author:** [Fredrik Bakke](https://www.ntnu.edu/employees/fredrik.bakke)

Expand All @@ -20,7 +20,7 @@ open import elementary-number-theory.rational-numbers using
( is-countable-ℚ)
```

### [11. The Infinitude of Primes](https://www.cs.ru.nl/~freek/100/#11) {#11}
### 11. The Infinitude of Primes [(#11)](https://www.cs.ru.nl/~freek/100/#11) {#11}

**Author:** [Egbert Rijke](https://egbertrijke.github.io)

Expand All @@ -29,11 +29,11 @@ open import elementary-number-theory.infinitude-of-primes using
( infinitude-of-primes-ℕ)
```

### [22. The Non-Denumerability of the Continuum](https://www.cs.ru.nl/~freek/100/#22) {#22}
### 22. The Non-Denumerability of the Continuum [(#22)](https://www.cs.ru.nl/~freek/100/#22) {#22}

> This is not yet formalized.

### [25. Schröder–Bernstein Theorem](https://www.cs.ru.nl/~freek/100/#25) {#25}
### 25. Schröder–Bernstein Theorem [(#25)](https://www.cs.ru.nl/~freek/100/#25) {#25}

**Author:** [Elif Uskuplu](https://elifuskuplu.github.io)

Expand All @@ -49,7 +49,7 @@ open import foundation.cantor-schroder-bernstein-escardo using
( Cantor-Schröder-Bernstein)
```

### [44. The Binomial Theorem](https://www.cs.ru.nl/~freek/100/#44) {#44}
### 44. The Binomial Theorem [(#44)](https://www.cs.ru.nl/~freek/100/#44) {#44}

**Author:** [Egbert Rijke](https://egbertrijke.github.io)

Expand All @@ -68,7 +68,7 @@ open import elementary-number-theory.binomial-theorem-natural-numbers using
( binomial-theorem-ℕ)
```

### [52. The Number of Subsets of a Set](https://www.cs.ru.nl/~freek/100/#52) {#52}
### 52. The Number of Subsets of a Set [(#52)](https://www.cs.ru.nl/~freek/100/#52) {#52}

**Author:** [Egbert Rijke](https://egbertrijke.github.io)

Expand All @@ -77,7 +77,7 @@ open import univalent-combinatorics.decidable-subtypes using
( number-of-elements-decidable-subtype-is-finite)
```

### [58. Formula for the number of combinations](https://www.cs.ru.nl/~freek/100/#58) {#58}
### 58. Formula for the number of combinations [(#58)](https://www.cs.ru.nl/~freek/100/#58) {#58}

**Author:** [Egbert Rijke](https://egbertrijke.github.io)

Expand All @@ -86,7 +86,7 @@ open import univalent-combinatorics.binomial-types using
( has-cardinality-binomial-type)
```

### [60. Bezout's Lemma](https://www.cs.ru.nl/~freek/100/#60) {#60}
### 60. Bezout's Lemma [(#60)](https://www.cs.ru.nl/~freek/100/#60) {#60}

**Author:** [Bryan Lu](https://blu-bird.github.io)

Expand All @@ -101,7 +101,7 @@ open import elementary-number-theory.bezouts-lemma-natural-numbers using
( bezouts-lemma-ℕ)
```

### [63. Cantor's Theorem](https://www.cs.ru.nl/~freek/100/#63) {#63}
### 63. Cantor's Theorem [(#63)](https://www.cs.ru.nl/~freek/100/#63) {#63}

**Author:** [Egbert Rijke](https://egbertrijke.github.io)

Expand All @@ -110,7 +110,7 @@ open import foundation.cantors-theorem using
( theorem-Cantor)
```

### [69. Greatest Common Divisor Algorithm](https://www.cs.ru.nl/~freek/100/#69) {#69}
### 69. Greatest Common Divisor Algorithm [(#69)](https://www.cs.ru.nl/~freek/100/#69) {#69}

**Author:** [Egbert Rijke](https://egbertrijke.github.io)

Expand All @@ -120,7 +120,7 @@ open import
( GCD-ℕ)
```

### [74. The Principle of Mathematical Induction](https://www.cs.ru.nl/~freek/100/#74) {#74}
### 74. The Principle of Mathematical Induction [(#74)](https://www.cs.ru.nl/~freek/100/#74) {#74}

**Author:** [Egbert Rijke](https://egbertrijke.github.io)

Expand All @@ -129,7 +129,7 @@ open import elementary-number-theory.natural-numbers using
( ind-ℕ)
```

### [80. The Fundamental Theorem of Arithmetic](https://www.cs.ru.nl/~freek/100/#80) {#80}
### 80. The Fundamental Theorem of Arithmetic [(#80)](https://www.cs.ru.nl/~freek/100/#80) {#80}

**Author:** [Victor Blanchi](https://github.com/VictorBlanchi)

Expand All @@ -138,7 +138,7 @@ open import elementary-number-theory.fundamental-theorem-of-arithmetic using
( fundamental-theorem-arithmetic-list-ℕ)
```

### [91. The Triangle Inequality](https://www.cs.ru.nl/~freek/100/#91) {#91}
### 91. The Triangle Inequality [(#91)](https://www.cs.ru.nl/~freek/100/#91) {#91}

**Author:** [malarbol](https://github.com/malarbol)

Expand All @@ -147,7 +147,7 @@ open import real-numbers.metric-space-of-real-numbers using
( is-triangular-premetric-leq-ℝ)
```

### [96. Principle of Inclusion/Exclusion](https://www.cs.ru.nl/~freek/100/#96) {#96}
### 96. Principle of Inclusion/Exclusion [(#96)](https://www.cs.ru.nl/~freek/100/#96) {#96}

> This is not yet formalized.

Expand Down
2 changes: 1 addition & 1 deletion src/real-numbers/metric-space-of-real-numbers.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@ premetric-leq-ℝ l d x y =
### The standard premetric on the real numbers is a metric structure

The triangle inequality is the 91st theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.
fredrik-bakke marked this conversation as resolved.
Show resolved Hide resolved

```agda
Expand Down
2 changes: 1 addition & 1 deletion src/ring-theory/binomial-theorem-rings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ have
```

The binomial theorem is the 44th theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

## Definitions
Expand Down
2 changes: 1 addition & 1 deletion src/ring-theory/binomial-theorem-semirings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ have
```

The binomial theorem is the 44th theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

## Definitions
Expand Down
2 changes: 1 addition & 1 deletion src/univalent-combinatorics/binomial-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -388,7 +388,7 @@ equiv-binomial-type e f =
### Computation of the number of elements of the binomial type `((Fin n) (Fin m))`

The computation of the number of subsets of a given cardinality of a finite set
is the 58th theorem on [Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
is the 58th theorem on [Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

```agda
Expand Down
2 changes: 1 addition & 1 deletion src/univalent-combinatorics/decidable-subtypes.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,7 @@ module _
### The type of decidable subtypes of a finite type is finite

The computation of the number of subsets of a finite sets is the 52nd theorem on
[Freek Wiedijk's](http://www.cs.ru.nl/F.Wiedijk/) list of
[Freek Wiedijk](http://www.cs.ru.nl/F.Wiedijk/)'s list of
[100 theorems](literature.100-theorems.md) {{#cite 100theorems}}.

```agda
Expand Down
Loading