- i. Variables of Interest
- ii. Checking for Missing Values
- iii. Dealing with Missing Values
- iv. Descriptive Stats [all variables]
- v. Survival Count/s V/S Desired Variables
- vi. Dummy Categorical [relaxing 1st variable]
- vii. Standardization
- i. Training the Dataset:-
- ii. Declare Targets and Inputs
- iii. Optimization Algorithm (Stratified K-Folds Cross-Validator)
- iv. Logistic Regression Model
- v. Modeling with the best parameter
- vi. Accuracy of the training and testing dataset
- vii. Precision, Recall, F-Score, Support
- viii. ROC AUC Score
- i. Variables of Interest
- ii. Checking for Missing Values
- iii. Dealing with Missing Values
- iv. Descriptive Stats [all variables]
- v. Survival Count/s V/S Desired Variables
- vi. Dummy Categorical [relaxing 1st variable]
- vii. Prediction’s Dataset Performance