Skip to content

Weugene/basilisk_src

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

# Solvers

## [Saint-Venant](saint-venant.h)
$$
  \partial_t \int_{\Omega} \mathbf{q} d \Omega =
  \int_{\partial \Omega} \mathbf{f} (
  \mathbf{q}) \cdot \mathbf{n}d \partial
  \Omega - \int_{\Omega} hg \nabla z_b
$$
$$
  \mathbf{q} = \left(\begin{array}{c}
    h\\
    hu_x\\
    hu_y
  \end{array}\right), 
  \;\;\;\;\;\;
  \mathbf{f} (\mathbf{q}) = \left(\begin{array}{cc}
    hu_x & hu_y\\
    hu_x^2 + \frac{1}{2} gh^2 & hu_xu_y\\
    hu_xu_y & hu_y^2 + \frac{1}{2} gh^2
  \end{array}\right)
$$

* [Semi-implicit scheme](saint-venant-implicit.h)
* [Multiple layers](multilayer.h)
$$
\partial_th + \partial_x\sum_{l=0}^{nl-1}h_lu_l = 0
$$

$$
\partial_t(h\mathbf{u}_l) + \nabla\cdot\left(h\mathbf{u}_l\otimes\mathbf{u}_l + 
\frac{gh^2}{2}\mathbf{I}\right) = 
- gh\nabla z_b - \partial_z(h\mathbf{u}w) + \nu h\partial_{z^2}\mathbf{u}
$$

* [Green-Naghdi](green-naghdi.h)
$$
  \partial_t \int_{\Omega} \mathbf{q} d \Omega =
  \int_{\partial \Omega} \mathbf{f} (
  \mathbf{q}) \cdot \mathbf{n}d \partial
  \Omega - \int_{\Omega} hg \nabla z_b +
  h \left( \frac{g}{\alpha}\nabla \eta - D \right)
$$
$$
\alpha h\mathcal{T} \left( D \right) + hD = b
$$
$$
b = \left[ \frac{g}{\alpha} \nabla \eta +\mathcal{Q}_1 \left( u \right)
\right]
$$

* [Multilayer hydrostatic](layered/hydro.h)

$$
\begin{aligned}
  \partial_t h_k + \mathbf{{\nabla}} \cdot \left( h \mathbf{u} \right)_k & =
  0,\\
  \partial_t \left( h \mathbf{u} \right)_k + \mathbf{{\nabla}} \cdot \left(
  h \mathbf{u}  \mathbf{u} \right)_k & = - gh_k  \mathbf{{\nabla}} (\eta) 
\end{aligned}
$$

## [Systems of conservation laws](conservation.h)
$$
\partial_t\left(\begin{array}{c}
    s_i\\
    \mathbf{v}_j\\
 \end{array}\right) + \nabla\cdot\left(\begin{array}{c}
    \mathbf{F}_i\\
    \mathbf{T}_j\\
 \end{array}\right) = 0
$$

* [Compressible gas dynamics](compressible.h)
* [All Mach compressible flows](all-mach.h)

$$
\partial_t\mathbf{q} + \nabla\cdot(\mathbf{q}\mathbf{u}) = 
- \nabla p + \nabla\cdot(\mu\nabla\mathbf{u}) + \rho\mathbf{a}
$$
$$
\partial_t p + \mathbf{u}\cdot\nabla p = -\rho c^2\nabla\cdot\mathbf{u}
$$

* [All Mach compressible two-phase flows](compressible/two-phase.h)

$$
\frac{\partial (f \rho_i)}{\partial t } + 
\nabla \cdot (f \rho_i \mathbf{u}) = 0 
$$
$$
\frac{\partial (\rho_i \mathbf{u})}{\partial t } + 
\nabla \cdot ( \rho_i  \mathbf{u} \mathbf{u}) = 
-\nabla p + \nabla \cdot \tau_i' 
$$
$$
\frac{\partial [\rho_i (e_i + \mathbf{u}^2/2)]}{\partial t } 
+ \nabla \cdot [ \rho_i \mathbf{u} (e_i  + \mathbf{u}^2/2)] =
-\nabla \cdot (\mathbf{u} p_i) + 
\nabla \cdot \left( \tau'_i \mathbf{u} \right)
$$

* [Thermal effects for all Mach compressible two-phase flows](compressible/thermal.h)

$$
\rho_ic_{p,i}\frac{DT_i}{Dt} = \beta_iT_i\frac{Dp_i}{Dt} - \nabla\cdot\mathbf{q}_i
$$
$$
\left(\frac{\gamma_i}{\rho_ic_i^2} - \frac{\beta_i^2T_i}{\rho_ic_{p,i}}\right)\frac{Dp_i}{Dt} = 
-\frac{\beta_i}{\rho_ic_{p,i}}\nabla\cdot\mathbf{q}_i - \nabla\cdot\mathbf{u}_i
$$

## Navier--Stokes
* [Streamfunction--Vorticity formulation](navier-stokes/stream.h)
$$
\partial_t\omega + \mathbf{u}\cdot\nabla\omega = \nu\nabla^2\omega
$$
$$
\nabla^2\psi = \omega
$$

* ["Markers-And-Cells" (MAC or "C-grid") formulation](navier-stokes/mac.h)
* [Centered formulation](navier-stokes/centered.h)
$$
\partial_t\mathbf{u}+\nabla\cdot(\mathbf{u}\otimes\mathbf{u}) = 
\frac{1}{\rho}\left[-\nabla p + \nabla\cdot(2\mu\mathbf{D})\right] + \mathbf{a}
$$
$$
\nabla\cdot\mathbf{u} = 0
$$
    + [Azimuthal velocity for axisymmetric flows](navier-stokes/swirl.h)
	$$
    \partial_t w + u_x \partial_x w + u_y \partial_y w + \frac{u_y w}{y} =
    \frac{1}{\rho y}  \left[ \nabla \cdot (\mu y \nabla w) - w \left(
    \frac{\mu}{y} + \partial_y \mu \right) \right]
	$$
* [Two-phase interfacial flows](two-phase.h)
    + [Momentum conservation option](navier-stokes/conserving.h)
* [Momentum-conserving two-phase interfacial flows](momentum.h)
* [Multilayer incompressible Euler/Navier-Stokes equations
   with a free-surface](layered/README)

$$
\begin{aligned}
  \partial_t h_k + \mathbf{{\nabla}} \cdot \left( h \mathbf{u} \right)_k & =
  0,\\
  \partial_t \left( h \mathbf{u} \right)_k + \mathbf{{\nabla}} \cdot \left(
  h \mathbf{u}  \mathbf{u} \right)_k & = - gh_k  \mathbf{{\nabla}} (\eta) 
  - \mathbf{{\nabla}} (h \phi)_k + \left[ \phi 
      \mathbf{{\nabla}} z \right]_k,\\
  \partial_t (hw)_k + \mathbf{{\nabla}} \cdot 
  \left( hw \mathbf{u} \right)_k & = - [\phi]_k,\\
  \mathbf{{\nabla}} \cdot \left( h \mathbf{u} \right)_k + 
  \left[ w - \mathbf{u} \cdot \mathbf{{\nabla}} z \right]_k &  = 0
\end{aligned}
$$

## Electrohydrodynamics

* [Ohmic conduction](ehd/implicit.h)
$$
\partial_t\rho_e = \nabla \cdot(K \nabla \phi)
$$
$$
\nabla \cdot (\epsilon \nabla \phi) = - \rho_e
$$
* [Ohmic conduction of charged species](ehd/pnp.h)
$$
\partial_tc_i = \nabla \cdot( K_i c_i \nabla \phi)
$$
* [Electrohydrodynamic stresses](ehd/stress.h)
$$
M_{ij} = \varepsilon (E_i E_j - \frac{E^2}{2}\delta_{ij})
$$

## Viscoelasticity

* [The log-conformation method for some viscoelastic constitutive 
models](log-conform.h)

$$
\rho\left[\partial_t\mathbf{u}+\nabla\cdot(\mathbf{u}\otimes\mathbf{u})\right] = 
- \nabla p + \nabla\cdot(2\mu_s\mathbf{D}) + \nabla\cdot\mathbf{\tau}_p
+ \rho\mathbf{a}
$$
$$
\mathbf{\tau}_p = \frac{\mu_p \mathbf{f_s}(\mathbf{A})}{\lambda}
$$
$$
\Psi = \log\mathbf{A}
$$
$$
D_t \Psi = (\Omega \cdot \Psi -\Psi \cdot \Omega) + 2 \mathbf{B} +
\frac{e^{-\Psi} \mathbf{f}_r (e^{\Psi})}{\lambda}
$$

## Other equations
* [Hele-Shaw/Darcy flows](hele-shaw.h)
$$
\mathbf{u} = \beta\nabla p
$$
$$
\nabla\cdot(\beta\nabla p) = \zeta
$$
* [Advection](advection.h)
$$
\partial_tf_i+\mathbf{u}\cdot\nabla f_i=0
$$
    + [Volume-Of-Fluid advection](vof.h)
	+ [Contact angles](contact.h)
* [Interfacial forces](iforce.h)
$$
\phi\mathbf{n}\delta_s
$$
    + [Surface tension](tension.h)
$$
\sigma\kappa\mathbf{n}\delta_s
$$
    + [Reduced gravity](reduced.h)
$$
[\rho]\mathbf{g}\cdot\mathbf{x}\mathbf{n}\delta_s
$$
    + [Surface tension (integral formulation)](integral.h)
$$
\sigma^{x x}_i = \left[ \gamma \frac{t^x}{\Delta} +
   \left\{\begin{array}{ll}
     s^x  (p_{j - 1} - p_j) & \text{if } s^x < 1 / 2\\
     (s^x - 1)  (p_j - p_{j + 1}) & \text{otherwise}
   \end{array}\right. \right]_i
$$
* [Reaction--Diffusion](diffusion.h)
$$ 
\theta\partial_tf = \nabla\cdot(D\nabla f) + \beta f + r
$$ 
* [Poisson--Helmholtz](poisson.h)
$$
\nabla\cdot (\alpha\nabla a) + \lambda a = b
$$
* [General spatial linear systems](solve.h)
$$
\mathcal{L}(a) = b
$$
* [Henry's law](henry.h)
* [Runge--Kutta time integrators](runge-kutta.h)
$$
\frac{\partial\mathbf{u}}{\partial t} = L(\mathbf{u}, t)
$$
* [Signed distance field](distance.h)
* [Redistancing of a distance field](redistance.h)
$$
\left\{\begin{array}{ll}
\phi_t + \text{sign}(\phi^{0}) \left(\left| \nabla \phi\right| - 1 \right) = 0\\ 
\phi(x,0) = \phi^0(x)
\end{array}
\right.
$$
* [Okada fault model](okada.h)
* [Hessenberg systems](hessenberg.h)
* [Community Ocean Vertical Mixing (CVMix) interface](cvmix/cvmix.h)
* [A C interface to the General Ocean Turbulence Model](gotm/common.h)

# The Basilisk C preprocessor

* [qcc](qcc.c): the command line preprocessor/compiler
* [The Abstract Syntax Tree (AST) library](ast/README)
* [Dimensional Analysis](ast/interpreter/dimension.c)

# General orthogonal coordinates

When not written in vector form, some of the equations above will
change depending on the choice of coordinate system (e.g. polar rather
than Cartesian coordinates). In addition, extra terms can appear due
to the geometric curvature of space (e.g. equations on the sphere). An
important simplification is to consider only [orthogonal
coordinates](http://en.wikipedia.org/wiki/Orthogonal_coordinates). In
this case, consistent finite-volume discretisations of standard
operators (divergence etc...) can be obtained, for any orthogonal
curvilinear coordinate system, using only a few additional geometric
parameters.

![Metric scale factors](figures/metric.svg)

The [face vector](/Basilisk C#face-and-vertex-fields) *fm* is the
*scale factor* for the length of a face i.e. the physical length is
$fm\Delta$ and the scalar field *cm* is the scale factor for the area
of the cell i.e. the physical area is $cm\Delta^2$. By default, these
fields are constant and unity (i.e. the Cartesian metric).

Several metric spaces/coordinate systems are predefined:

* [Axisymmetric](axi.h)
    + [Stokes stream function](axistream.h)
    $$
    \frac{\partial^2\psi}{\partial z^2} + 
    \frac{\partial^2\psi}{\partial r^2} - \frac{1}{r}\partial_r\psi 
    = - \omega r
    $$
* [Spherical symmetry](spherisym.h)
* [Spherical](spherical.h)
* [Radial/cylindrical](radial.h)

# Data processing

* [Various utility functions](utils.h): timing, field statistics,
  slope limiters, etc.
* [Tagging connected neighborhoods](tag.h)
* [Counting droplets](examples/atomisation.c#counting-droplets)

# Output functions

* [Multiple fields interpolated on a regular grid (text format)](output.h#output_field-multiple-fields-interpolated-on-a-regular-grid-text-format)
* [Single field interpolated on a regular grid (binary format)](output.h#output_matrix-single-field-interpolated-on-a-regular-grid-binary-format)
* [Portable PixMap (PPM) image output](output.h#output_ppm-portable-pixmap-ppm-image-output)
* [Volume-Of-Fluid facets](fractions.h#interface-output)
* [Basilisk snapshots](output.h#dump-basilisk-snapshots)
* [Gerris simulation format](output.h#output_gfs-gerris-simulation-format)
* [ESRI ASCII Grid format](output.h#output_grd-esri-ascii-grid-format)
* [VTK format](vtk.h)

# Input functions

* [Basilisk snapshots](output.h#dump-basilisk-snapshots)
* [Gerris simulation format](input.h#input_gfs-gerris-simulation-format)
* [ESRI ASCII Grid format](input.h#input_grd-raster-format-esri-grid)
* [Portable Gray Map (PGM) images](input.h#input_pgm-importing-portable-gray-map-pgm-images)

# Basilisk View

* [Javascript interface](jview/README)
* ["Dump files" server](bview.c)
* [Online](view.h)

# Miscellaneous functions/modules

* [Controlling the maximum runtime](maxruntime.h)

# Tracking floating-point exceptions

On systems which support [signaling
NaNs](http://en.wikipedia.org/wiki/NaN#Signaling_NaN) (such as
GNU/Linux), Basilisk is set up so that trying to use an unitialised
value will cause a floating-point exception to be triggered and the
program to abort. This is particularly useful when developing adaptive
algorithms and/or debugging boundary conditions.

To maximise the "debugging potential" of this approach it is also
recommended to use the `trash()` function to reset any field prior to
updates. This will guarantee that older values are not mistakenly
reused. Note that this call is quite expensive and needs to be turned on
by adding `-DTRASH=1` to the compilation flags (otherwise it is just
ignored).

Doing

~~~bash
ulimit -c unlimited
~~~

before running the code will allow generation of `core` files which
can be used for post-mortem debugging (e.g. with gdb).

## Visualising stencils

It is often useful to visualise the values of fields in the stencil
which triggered the exception. This can be done using the `-catch`
option of `qcc`.

We will take this code as an example:

~~~c
#include "utils.h"

int main()
{
  init_grid (16);
  scalar a[];
  trash ({a});
  foreach()
    a[] = x;
  vector ga[];
  gradients ({a}, {ga});
}
~~~

Copy and paste this into `test.c`, then do

~~~bash
ulimit -c unlimited
qcc -DTRASH=1 -g -Wall test.c -o test -lm
./test
~~~

you should get

~~~
Floating point exception (core dumped)
~~~

Then do

~~~bash
gdb test core
~~~

you should get

~~~
...
Core was generated by `./test'.
Program terminated with signal 8, Arithmetic exception.
#0  0x0000000000419dbe in gradients (f=0x7fff5f412430, g=0x7fff5f412420)
    at /home/popinet/basilisk/wiki/src/utils.h:203
203		  v.x[] = (s[1,0] - s[-1,0])/(2.*Delta);
~~~

i.e. the exception occured in the [gradients()](utils.h#gradients)
function of [utils.h]().

To visualise the stencil/fields which lead to the exception do

~~~bash
qcc -catch -g -Wall test.c -o test -lm
./test 
~~~

you should now get

~~~
Caught signal 8 (Floating Point Exception)
Caught signal 6 (Aborted)
Last point stencils can be displayed using (in gnuplot)
  set size ratio -1
  set key outside
  v=0
  plot 'cells' w l lc 0, \
    'stencil' u 1+3*v:2+3*v:3+3*v w labels tc lt 1 title columnhead(3+3*v), \
	'coarse' u 1+3*v:2+3*v:3+3*v w labels tc lt 3 t ''
Aborted (core dumped)
~~~

Follow the instructions i.e.

~~~bash
gnuplot
gnuplot> set size ratio -1
gnuplot> set key outside
gnuplot> v=0
gnuplot> plot 'cells' w l lc 0, \
  'stencil' u 1+3*v:2+3*v:3+3*v w labels tc lt 1 title columnhead(3+3*v), \
  'coarse' u 1+3*v:2+3*v:3+3*v w labels tc lt 3 t ''
~~~

With some zooming and panning, you should get this picture

![Example of stencil/field causing an exception](figures/catch.png)

The red numbers represent the stencil the code was working on when the
exception occured. It is centered on the top-left corner of the
domain. Cells both inside the domain and outside (i.e. ghost cells)
are represented. While the field inside the domain has been
initialised, ghost cell values have not. This causes the `gradients()`
function to generate the exception when it tries to access ghost cell
values.

To initialise the ghost-cell values, we need to apply the boundary
conditions i.e. add

~~~c
  boundary ({a});
~~~

after initialisation. Recompiling and re-running confirms that this
fixes the problem.

Note that the blue numbers are the field values for the parent cells
(in the quadtree hierarchy). We can see that these are also
un-initialised but this is not a problem since we don't use them in
this example.

The `v` value in the gnuplot script is important. It controls which
field is displayed. `v=0` indicates the first field allocated by the
program (i.e. `a[]` in this example), accordingly `ga.x[]` and
`ga.y[]` have indices 1 and 2 respectively.

## Tracing permissions

Some recent systems disallow tracing of processes for security
reasons. The symptom will be an error message from gdb looking like:

~~~bash
Attaching to process 9351
Could not attach to process.  If your uid matches the uid of the target
process, check the setting of /proc/sys/kernel/yama/ptrace_scope, or try
again as the root user.  For more details, see /etc/sysctl.d/10-ptrace.conf
ptrace: Operation not permitted.
~~~

To enable tracing (which weakens your system's security), you need to do:

~~~bash
sudo sh -c 'echo 0 > /proc/sys/kernel/yama/ptrace_scope'
~~~

# See also

* [Tips]()
* [Built-in profiling](README.trace)
* [Built-in memory profiling](README.mtrace)
* [Performance profiling with Paraver](README.paraver)
* [Profiling round-off errors with CADNA](README.cadna)