Skip to content

Commit

Permalink
Deployed e77ee40 with MkDocs version: 1.4.3
Browse files Browse the repository at this point in the history
  • Loading branch information
Unknown committed Jun 18, 2023
1 parent b87bf01 commit f1acf5a
Show file tree
Hide file tree
Showing 5 changed files with 98 additions and 8 deletions.
100 changes: 95 additions & 5 deletions course/digital-image-processing/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -514,6 +514,13 @@
点处理
</a>

</li>

<li class="md-nav__item">
<a href="#空间滤波" class="md-nav__link">
空间滤波
</a>

</li>

</ul>
Expand All @@ -522,10 +529,30 @@
</li>

<li class="md-nav__item">
<a href="#4-频域" class="md-nav__link">
§4 频域
<a href="#4-频率域" class="md-nav__link">
§4 频率域
</a>

<nav class="md-nav" aria-label="§4 频率域">
<ul class="md-nav__list">

<li class="md-nav__item">
<a href="#多维-DFT" class="md-nav__link">
多维 DFT
</a>

</li>

<li class="md-nav__item">
<a href="#滤波" class="md-nav__link">
滤波
</a>

</li>

</ul>
</nav>

</li>

<li class="md-nav__item">
Expand Down Expand Up @@ -1057,6 +1084,13 @@
点处理
</a>

</li>

<li class="md-nav__item">
<a href="#空间滤波" class="md-nav__link">
空间滤波
</a>

</li>

</ul>
Expand All @@ -1065,10 +1099,30 @@
</li>

<li class="md-nav__item">
<a href="#4-频域" class="md-nav__link">
§4 频域
<a href="#4-频率域" class="md-nav__link">
§4 频率域
</a>

<nav class="md-nav" aria-label="§4 频率域">
<ul class="md-nav__list">

<li class="md-nav__item">
<a href="#多维-DFT" class="md-nav__link">
多维 DFT
</a>

</li>

<li class="md-nav__item">
<a href="#滤波" class="md-nav__link">
滤波
</a>

</li>

</ul>
</nav>

</li>

<li class="md-nav__item">
Expand Down Expand Up @@ -1267,7 +1321,43 @@ <h3 id="点处理">点处理<a class="headerlink" href="#点处理" title="Perma
</li>
</ul>
<p>由此引出灰度直方图,可用于评估成像条件(动态范围)、增强图像(<u>直方图均衡化</u>)、分割图像、压缩图像(统计编码)。</p>
<h2 id="4-频域">§4 频域<a class="headerlink" href="#4-频域" title="Permanent link">&para;</a></h2>
<h3 id="空间滤波">空间滤波<a class="headerlink" href="#空间滤波" title="Permanent link">&para;</a></h3>
<blockquote>
<p><span class="twemoji"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 13.1c-.1 0-.3.1-.4.2l-1 1 2.1 2.1 1-1c.2-.2.2-.6 0-.8l-1.3-1.3c-.1-.1-.2-.2-.4-.2m-1.9 1.8-6.1 6V23h2.1l6.1-6.1-2.1-2M12.5 7v5.2l4 2.4-1 1L11 13V7h1.5M11 21.9c-5.1-.5-9-4.8-9-9.9C2 6.5 6.5 2 12 2c5.3 0 9.6 4.1 10 9.3-.3-.1-.6-.2-1-.2s-.7.1-1 .2C19.6 7.2 16.2 4 12 4c-4.4 0-8 3.6-8 8 0 4.1 3.1 7.5 7.1 7.9l-.1.2v1.8Z"/></svg></span> 2023年6月18日。</p>
</blockquote>
<p>用空间子图像掩模增强图像,邻域处理。</p>
<ul>
<li>平滑:加权均值(模糊扩散),统计排序(不会模糊图像)。</li>
<li>锐化:一阶微分(梯度模,斜坡),二阶微分(Laplacian,点、线),</li>
</ul>
<h2 id="4-频率域">§4 频率域<a class="headerlink" href="#4-频率域" title="Permanent link">&para;</a></h2>
<h3 id="多维-DFT">多维 DFT<a class="headerlink" href="#多维-DFT" title="Permanent link">&para;</a></h3>
<blockquote>
<p><span class="twemoji"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 13.1c-.1 0-.3.1-.4.2l-1 1 2.1 2.1 1-1c.2-.2.2-.6 0-.8l-1.3-1.3c-.1-.1-.2-.2-.4-.2m-1.9 1.8-6.1 6V23h2.1l6.1-6.1-2.1-2M12.5 7v5.2l4 2.4-1 1L11 13V7h1.5M11 21.9c-5.1-.5-9-4.8-9-9.9C2 6.5 6.5 2 12 2c5.3 0 9.6 4.1 10 9.3-.3-.1-.6-.2-1-.2s-.7.1-1 .2C19.6 7.2 16.2 4 12 4c-4.4 0-8 3.6-8 8 0 4.1 3.1 7.5 7.1 7.9l-.1.2v1.8Z"/></svg></span> 2023年6月18日。</p>
<p><span class="twemoji"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 4.5C7 4.5 2.7 7.6 1 12c1.7 4.4 6 7.5 11 7.5h1.1c-.1-.3-.1-.6-.1-1 0-.6.1-1.1.2-1.7-.4.1-.8.2-1.2.2-2.8 0-5-2.2-5-5s2.2-5 5-5 5 2.2 5 5c0 .3 0 .6-.1.9.7-.2 1.4-.4 2.1-.4 1.2 0 2.3.3 3.3 1 .3-.5.5-1 .7-1.5-1.7-4.4-6-7.5-11-7.5M12 9c-1.7 0-3 1.3-3 3s1.3 3 3 3 3-1.3 3-3-1.3-3-3-3m7 12v-2h-4v-2h4v-2l3 3-3 3"/></svg></span> <a href="https://en.wikipedia.org/w/index.php?title=Discrete_Fourier_transform&amp;oldid=1153873152#Multidimensional_DFT">Discrete Fourier transform - Wikipedia</a></p>
</blockquote>
<div class="arithmatex">\[
\begin{aligned}
X_\vb*{k} &amp;= \sum_{\vb*n} e^{-2 \pi j \times \vb*{k} \vdot \frac{\vb*n}{\vb*N}} x_\vb*{n}. \\
x_\vb*{n} &amp;= \frac{1}{\prod \vb*{N}} \sum_{\vb*n} e^{2 \pi j \times \vb*{k} \vdot \frac{\vb*n}{\vb*N}} x_\vb*{k}. \\
\end{aligned}
\]</div>
<p>(The division is element-wise.)</p>
<p>The multidimensional DFT expresses the input as a superposition of plane waves, or multidimensional sinusoids. It can be computed by the composition of a sequence of one-dimensional DFTs along each dimension. </p>
<p>时域因变量共轭对应频域两次因变量共轭、自变量反转,两次共轭抵消了。</p>
<p>频谱因变量中,相位反映图像空间特征内容,幅度反映灰度;自变量中,直流对应平均,低频对应缓变,高频对应边缘和突变。关于方向性,请参考单缝衍射。</p>
<h3 id="滤波">滤波<a class="headerlink" href="#滤波" title="Permanent link">&para;</a></h3>
<blockquote>
<p><span class="twemoji"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 13.1c-.1 0-.3.1-.4.2l-1 1 2.1 2.1 1-1c.2-.2.2-.6 0-.8l-1.3-1.3c-.1-.1-.2-.2-.4-.2m-1.9 1.8-6.1 6V23h2.1l6.1-6.1-2.1-2M12.5 7v5.2l4 2.4-1 1L11 13V7h1.5M11 21.9c-5.1-.5-9-4.8-9-9.9C2 6.5 6.5 2 12 2c5.3 0 9.6 4.1 10 9.3-.3-.1-.6-.2-1-.2s-.7.1-1 .2C19.6 7.2 16.2 4 12 4c-4.4 0-8 3.6-8 8 0 4.1 3.1 7.5 7.1 7.9l-.1.2v1.8Z"/></svg></span> 2023年6月18日。</p>
</blockquote>
<p>基本步骤如下。</p>
<ol>
<li>时域补零,然后实现频域中心化。</li>
<li>正变换。</li>
<li>乘滤波器。</li>
<li>反变换。</li>
<li>时域取结果实部,恢复频域中心化,丢弃之前补零多的部分。</li>
</ol>
<h2 id="5-复原与重建">§5 复原与重建<a class="headerlink" href="#5-复原与重建" title="Permanent link">&para;</a></h2>
<h2 id="6-彩色">§6 彩色<a class="headerlink" href="#6-彩色" title="Permanent link">&para;</a></h2>
<h2 id="8-压缩">§8 压缩<a class="headerlink" href="#8-压缩" title="Permanent link">&para;</a></h2>
Expand Down
Loading

0 comments on commit f1acf5a

Please sign in to comment.