-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2defb79
commit 0a522a6
Showing
4 changed files
with
678 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,382 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import torch\n", | ||
"import random\n", | ||
"import librosa\n", | ||
"import numpy as np\n", | ||
"from datasets import load_dataset\n", | ||
"from IPython.display import Audio\n", | ||
"from librosa.beat import beat_track\n", | ||
"from diffusers import DiffusionPipeline\n", | ||
"import pandas as pd\n", | ||
"from diffusers import Mel\n", | ||
"import scipy.io.wavfile\n", | ||
"import random" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Load Model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", | ||
"generator = torch.Generator(device=device)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Install audio diffusion pipeline - https://github.com/teticio/audio-diffusion\n", | ||
"audio_diffusion = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256').to(device)\n", | ||
"mel = audio_diffusion.mel\n", | ||
"sample_rate = mel.get_sample_rate()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Randomly Generate Data Pairs" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df = pd.read_csv('/scratch/ys5hd/Riffusion/music/UrbanSound8K/metadata/UrbanSound8K_train.csv')\n", | ||
"df = df[['slice_file_name', 'fsID', 'fold', 'classID']]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"3\n", | ||
"2\n", | ||
"1\n", | ||
"0\n", | ||
"9\n", | ||
"8\n", | ||
"5\n", | ||
"4\n", | ||
"7\n", | ||
"6\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"sample_df = []\n", | ||
"for cls in df['classID'].unique():\n", | ||
" smp1 = df.loc[df['classID']==cls].reset_index(drop=True)\n", | ||
" smp2 = smp1.iloc[random.sample(list(range(smp1.shape[0])), 100)].reset_index(drop=True)\n", | ||
" smp2.columns = [x+'_1' for x in smp2.columns]\n", | ||
" smp2['slice_file_name_2'] = ''\n", | ||
"\n", | ||
" for index, row in smp2.iterrows():\n", | ||
" smp2.loc[index, 'slice_file_name_2'] = \\\n", | ||
" random.sample(list(smp1.loc[smp1['fsID']!=row['fsID_1'], 'slice_file_name'].values), 1)[0]\n", | ||
"\n", | ||
" smp1.columns = [x+'_2' for x in smp1.columns] \n", | ||
" smp2 = pd.merge(smp1, smp2, on='slice_file_name_2') \n", | ||
" \n", | ||
" sample_df.append(smp2)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sample_df = pd.concat(sample_df)\n", | ||
"sample_df.to_csv('sample_aug.csv', index=False)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Interpolate" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 23, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def interpolate_audio(fname1, fname2, TARGET_PATH):\n", | ||
" mel = Mel(x_res=256,\n", | ||
" y_res=256,\n", | ||
" hop_length=256,\n", | ||
" sample_rate=22050,\n", | ||
" n_fft=2048,\n", | ||
" n_iter=32)\n", | ||
"\n", | ||
" image = mel.load_audio(fname1)\n", | ||
" image = mel.audio_slice_to_image(0)\n", | ||
"\n", | ||
" image2 = mel.load_audio(fname2)\n", | ||
" image2 = mel.audio_slice_to_image(0)\n", | ||
"\n", | ||
" noise = audio_diffusion.encode([image])\n", | ||
" noise2 = audio_diffusion.encode([image2])\n", | ||
"\n", | ||
" alpha = 0.5 #@param {type:\"slider\", min:0, max:1, step:0.1}\n", | ||
" output = audio_diffusion(\n", | ||
" noise=audio_diffusion.slerp(noise, noise2, alpha),\n", | ||
" generator=generator)\n", | ||
" audio = output.audios[0, 0]\n", | ||
" \n", | ||
" scipy.io.wavfile.write(TARGET_PATH, sample_rate, audio[:len(mel.audio)]) \n", | ||
" \n", | ||
" return \n", | ||
"\n", | ||
"# display(Audio(mel.image_to_audio(image), rate=sample_rate))\n", | ||
"# display(Audio(mel.image_to_audio(image2), rate=sample_rate))\n", | ||
"# display(Audio(audio[:len(mel.audio)], rate=sample_rate))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Iterate through sample_df and generate new audio file\n", | ||
"\n", | ||
"TARGET_PATH = '/scratch/ys5hd/Riffusion/music/UrbanSound8K/audio/fold11/'\n", | ||
"PATH = '/scratch/ys5hd/Riffusion/music/UrbanSound8K/audio/fold'\n", | ||
"\n", | ||
"for index, row in sample_df.iterrows():\n", | ||
" fname1 = PATH+str(row['fold_2'])+'/'+row['slice_file_name_2']\n", | ||
" fname2 = PATH+str(row['fold_1'])+'/'+row['slice_file_name_1']\n", | ||
"\n", | ||
" interpolate_audio(fname1, fname2, \\\n", | ||
" TARGET_PATH+row['slice_file_name_2'][:-4]+'_'+row['slice_file_name_1'])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Generate New Training Data File for Urban Sound 8k" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"- We add generated audios as another fold to our training dataset" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 32, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df = pd.read_csv('/scratch/ys5hd/Riffusion/music/UrbanSound8K/metadata/UrbanSound8K_train.csv')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 35, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<div>\n", | ||
"<style scoped>\n", | ||
" .dataframe tbody tr th:only-of-type {\n", | ||
" vertical-align: middle;\n", | ||
" }\n", | ||
"\n", | ||
" .dataframe tbody tr th {\n", | ||
" vertical-align: top;\n", | ||
" }\n", | ||
"\n", | ||
" .dataframe thead th {\n", | ||
" text-align: right;\n", | ||
" }\n", | ||
"</style>\n", | ||
"<table border=\"1\" class=\"dataframe\">\n", | ||
" <thead>\n", | ||
" <tr style=\"text-align: right;\">\n", | ||
" <th></th>\n", | ||
" <th>slice_file_name</th>\n", | ||
" <th>fsID</th>\n", | ||
" <th>start</th>\n", | ||
" <th>end</th>\n", | ||
" <th>salience</th>\n", | ||
" <th>fold</th>\n", | ||
" <th>classID</th>\n", | ||
" <th>class</th>\n", | ||
" </tr>\n", | ||
" </thead>\n", | ||
" <tbody>\n", | ||
" <tr>\n", | ||
" <th>0</th>\n", | ||
" <td>100032-3-0-0.wav</td>\n", | ||
" <td>100032</td>\n", | ||
" <td>0.0</td>\n", | ||
" <td>0.317551</td>\n", | ||
" <td>1</td>\n", | ||
" <td>5</td>\n", | ||
" <td>3</td>\n", | ||
" <td>dog_bark</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>1</th>\n", | ||
" <td>100263-2-0-117.wav</td>\n", | ||
" <td>100263</td>\n", | ||
" <td>58.5</td>\n", | ||
" <td>62.500000</td>\n", | ||
" <td>1</td>\n", | ||
" <td>5</td>\n", | ||
" <td>2</td>\n", | ||
" <td>children_playing</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>2</th>\n", | ||
" <td>100263-2-0-121.wav</td>\n", | ||
" <td>100263</td>\n", | ||
" <td>60.5</td>\n", | ||
" <td>64.500000</td>\n", | ||
" <td>1</td>\n", | ||
" <td>5</td>\n", | ||
" <td>2</td>\n", | ||
" <td>children_playing</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>3</th>\n", | ||
" <td>100263-2-0-126.wav</td>\n", | ||
" <td>100263</td>\n", | ||
" <td>63.0</td>\n", | ||
" <td>67.000000</td>\n", | ||
" <td>1</td>\n", | ||
" <td>5</td>\n", | ||
" <td>2</td>\n", | ||
" <td>children_playing</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>4</th>\n", | ||
" <td>100263-2-0-137.wav</td>\n", | ||
" <td>100263</td>\n", | ||
" <td>68.5</td>\n", | ||
" <td>72.500000</td>\n", | ||
" <td>1</td>\n", | ||
" <td>5</td>\n", | ||
" <td>2</td>\n", | ||
" <td>children_playing</td>\n", | ||
" </tr>\n", | ||
" </tbody>\n", | ||
"</table>\n", | ||
"</div>" | ||
], | ||
"text/plain": [ | ||
" slice_file_name fsID start end salience fold classID \\\n", | ||
"0 100032-3-0-0.wav 100032 0.0 0.317551 1 5 3 \n", | ||
"1 100263-2-0-117.wav 100263 58.5 62.500000 1 5 2 \n", | ||
"2 100263-2-0-121.wav 100263 60.5 64.500000 1 5 2 \n", | ||
"3 100263-2-0-126.wav 100263 63.0 67.000000 1 5 2 \n", | ||
"4 100263-2-0-137.wav 100263 68.5 72.500000 1 5 2 \n", | ||
"\n", | ||
" class \n", | ||
"0 dog_bark \n", | ||
"1 children_playing \n", | ||
"2 children_playing \n", | ||
"3 children_playing \n", | ||
"4 children_playing " | ||
] | ||
}, | ||
"execution_count": 35, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"df.head()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 40, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sample_df['slice_file_name'] = sample_df['slice_file_name_2'].str[:-4]+'_'+sample_df['slice_file_name_1']" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 43, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sdf = sample_df[['slice_file_name', 'classID_1', 'fold_1']]\n", | ||
"sdf.columns = ['slice_file_name', 'classID', 'fold']\n", | ||
"sdf['fold'] = 11" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 51, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"pd.concat([df, sdf]).to_csv('/scratch/ys5hd/Riffusion/music/UrbanSound8K/metadata/UrbanSound8K_train_aug.csv', index=False)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "riffusion", | ||
"language": "python", | ||
"name": "riffusion" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.8" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
Oops, something went wrong.