A multi-purpose dataSet for Machine Learning algorithms training.
to create a DataSet to use for Zeeml Machine Learning, you need to specify a source : either a csv file or an array
$dataSet = DataSetFactory::create('/path/to/csv', ['name', 'Gender'], ['Height]);
The keys set in the header (first row of the CSV file) are used as keys for the dataSet
$dataSet = DataSetFactory::create(
[
['name' => 'Zac', 'gender' => 'Male', 'height' => 180],
['name' => 'Emily', 'gender' => 'Female', 'height' => 177],
['name' => 'Edward', 'gender' => 'Male', 'height' => 175],
['name' => 'Mark', 'gender' => 'Male', 'height' => 183],
['name' => 'Lesly', 'gender' => 'Female', 'height' => 170],
]
);
Any other array format will throw an exception
The prepare method must be called prior to any other call or an exception will be thrown.
$mapper = new Mapper(['name', 'gendre'], ['height']);
$dataSet->prepare($mapper);
where ['name', 'gendre'] are the indexes to use as inputs and ['height'] are the indexes to use as outputs.
There is no limit to the number of inputs and outputs to pick from the entry
If a key does not exist it will throw an exception.
In order to manipulate and change the values of the dataSet (cleaning, renaming ...) you can apply a "Policy".
A Policy is called when creating the Mapper. Each column can define multiple Policies :
$dataSet = DataSetFactory::create(
[
[180, 'Male'],
[177, 'Female'],
[170, ''],
[183, 'Male'],
]
);
$mapper = new Mapper(
[
0 => [Policy::replaceWithAvg(), Policy::rename('height')],
],
[
1 => [Policy::skip()]
]
);
$dataSet->prepare($mapper);
###Supported policies :
-
Policy::skip() : If the value at the corresponding index is empty (NULL, false, '') the whole row will be skipped
Example :
$data = [ [1, 2, 3], [4, null, 5], [6, 7, null], [null, 8, 9], ]; $dataSet = DataSetFactory::create($data); $mapper = new Mapper([0, 1 => Policy::skip()], [2 => Policy::skip()]); $dataSet->prepare($mapper); will use the following Inputs/Outputs : Inputs: [ [1, 2], [null, 8], //No policy applied on 0 ] Outputs: [ [3], [9], ]
-
Policy::replaceWith() : If the value at the corresponding index is empty (NULL, false, '') it will be replaced with the given value
Example :
$data = [ [1, 2, 3], [4, null, 5], [6, 7, null], [null, 8, 9], ]; $dataSet = DataSetFactory::create($data); $mapper = new Mapper([0, 1 => Policy::replaceWith('Unknown')], [2 => Policy::replaceWith(-1)]); $dataSet->prepare($mapper); will use the following Inputs/Outputs : Inputs: [ [1, 2], [4, 'Unknown'], [6, 7], [null, 8], //No policy applied on 0 ] Outputs: [ [3], [5], [-1], [9] ]
-
Policy::replaceWithAvg() : The empty values will be replaced with the average value of that column calculated from the original DataSet.
Example :
$data = [ [1, 2, 3], [4, null, 5], [6, 7, null], [null, 8, 9], ]; $dataSet = DataSetFactory::create($data); $mapper = new Mapper([0 => Policy::replaceWithAvg(), 1 => Policy::skip()], [2 => Policy::replaceWithAvg()]); $dataSet->prepare($mapper); will use the following Inputs/Outputs : Inputs: [ [1, 2], [6, 7], [2.75, 8], // Avg(0) = 1 + 4 + 6 + 0 = 11 / 4 = 2.75 ] Outputs: [ [3], [-1], [9], ] ]
-
Policy::replaceWithMostCommon() : The empty values will be replaced with the most common value (the value that occurs the most) If multiple values have the same frequency, one is taken randomly.
Example :
$data = [ [1, 2, 3], [1, null, 5], [6, 7, null], [null, 8, 9], ]; $dataSet = DataSetFactory::create($data); $mapper = new Mapper([0=> Policy::replaceWithMostCommon(), 1 => Policy::skip()], [2]); $dataSet->prepare($mapper); will use the following Inputs/Outputs : Inputs: [ [1, 2], [6, 7], [1, 8], ] Outputs: [ [3], [null], [9], ]
-
Policy::custom() : create your own Policy
the callable function is only called when the value is empty. The callable must :
- Take in a first parameter by reference which corresponds to the value of the column upon each iteration
- Take in a second parameter which corresponds to the line
- Return true to keep the line, false to skip it
Example :
$data = [ [180, 'Male'], [177, 'Female'], [170, ''], [183, 'Male'], ]; $dataSet = DataSetFactory::create($data); $genderCleaner = function(&$value, $line) { if ($line[0] > 175) { $value = 'Male' ; } else { $value = 'Female'; } return true; } $mapper = new Mapper([0], [1 => Policy::custom($genderCleaner)]); $dataSet->prepare($mapper); will use the following Inputs/Outputs : Inputs: [ [180], [177], [170], [183], ] Outputs: [ ['Male'], ['Female'], ['Female'], ['Male'], ]
You can rename the dataSet keys :
$data = [
['Zac', 'Male', 180],
['Emily', 'Female', 177],
['Edward', 'Male', 175],
['Mark', 'Male', 183],
['Lesly', 'Female', 170],
];
$dataSet = DataSetFactory::create($data);
$mapper = new Mapper([0, 1], [2]);
$dataSet->prepare($mapper);
$dataSet->rename([0 => 'Name', 1 => 'Gender', 2 => 'Height']);
and the inputs/outputs matrices used are :
Inputs :
[
['Name' => 'Zac', 'Gender' => 'Male'],
['Name' => 'Emily', 'Gender' => 'Female'],
['Name' => 'Edward', 'Gender' => 'Male'],
['Name' => 'Mark', 'Gender' => 'Male'],
['Name' => 'Lesly', 'Gender' => 'Female'],
]
Outputs :
[
['Height' => 180],
['Height' => 177],
['Height' => 175],
['Height' => 183],
['Height' => 170],
]